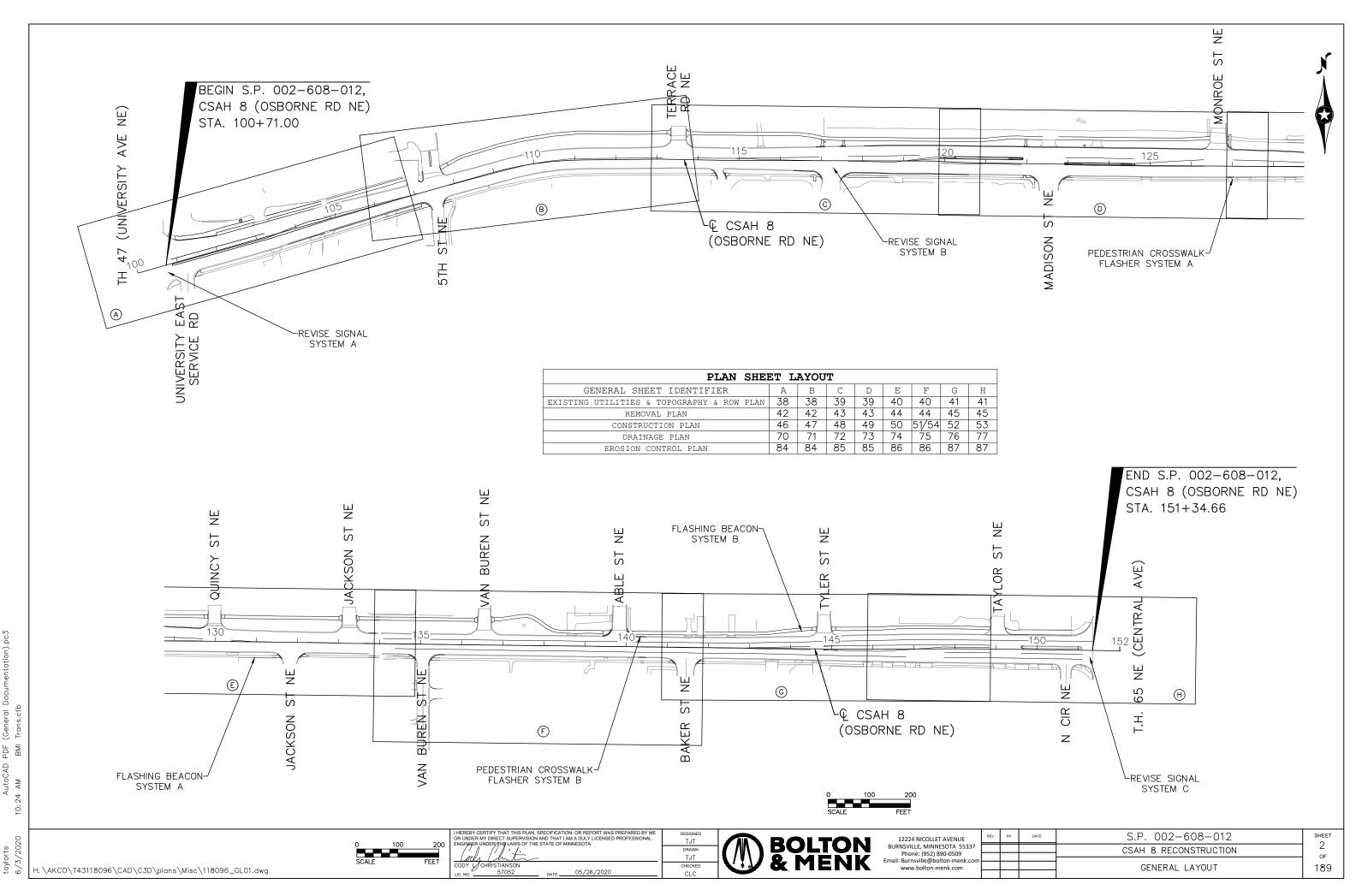


S.P. 002-608-012


H: \AKC0\T43118096\CAD\C3D\plons\Misc\118096_tsh

Bwb.

zocharypa AutoCAD PDF (General B99±090±0tion).pc3 g: 35 AM BMI Trans.ctb

SCALE IN FEET

	MINN. PROJ. <u>NO. HSIP 0221 (010)</u>
	GOVERNING SPECIFICATIONS THE 2018 EDITION OF THE MINNESOTA DEPARTMENT OF TRANSPORTATION "STANDARD SPECIFICATIONS FOR CONSTRUCTION" SHALL GOVERN.
	ALL TRAFFIC CONTROL DEVICES SHALL CONFORM AND BE INSTALLED IN ACCORDANCE TO THE "MINNESOTA MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES" (MN MUTCD), AND PART VI, "FIELD MANUAL FOR TEMPORARY TRAFFIC CONTROL ZONE LAYOUTS."
	SHEET NO. INDEX
	1 TITLE SHEET 2 GENERAL LAYOUT 3-5 STATEMENT OF ESTIMATED QUANTITIES 6 STANDARD PLATES & CONSTRUCTION NOTES 7 EARTHWORK SUMMARY & TABULATIONS 8 QUANTITY TABULATIONS
	9-14 TYPICAL SECTIONS 15 MISCELLANEOUS DETAILS 16-35 STANDARD PLANS 36-37 ALIGNMENT PLAN & TABULATIONS 38-41 EXISTING UTILITIES, TOPO & RIGHT OF WAY 42-45 REMOVAL PLAN 46-54 CONSTRUCTION PLAN
	55-69 INTERSECTION DETAILS 70-77 DRAINAGE PLANS 78 DRAINAGE TABULATION 79-80 DRAINAGE DETAILS 81-83 SWPPP AND WATER RESOURCES NOTES 84-88 EROSION CONTROL AND TURF ESTABLISHMENT 89-126 STAGING AND TRAFFIC CONTROL PLAN
	127–142 SIGNING AND PERMANENT PAVEMENT MARKING PLAN 143–178 SIGNAL PLANS 179–189 CROSS SECTIONS
ľ	THIS PLAN CONTAINS 189 SHEETS
	BOLTON BOLTON BOLTON BURNSVILLE , MINNESOTA 55337 Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com www.bolton-menk.com
	I HEREBY CERTIFY THAT THIS PLAN WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.
	PRINT NAME: CODY L. CHRISTIANSON LICENSE # 57052 DATE: 05/26/2020 SIGNATURE: Cody Cutor
	A Contract C
	RECOMMENDED FOR APPROVAL
	RECOMMENDED FOR APPROVAL ANOKA COUNTY ENGINEER
CE	STATE AID APPROVALS:
	6/9/ 20.20 DISTRICT STATE AID ENGINEER: REVIEWED FOR COMPLIANCE WITH STATE AID AND FEDERAL AID RULES/POLICY
	for STATE AID ENGINEER: APPROVED FOR STATE AID AND FEDERAL AID FUNDING
	SHEET NO. 1 OF 189 SHEETS

tation).pc3 Ö (General D Trans.ctb PDF BMI AutoCAD F 10:24 AM l 2020

							PARTIC	IPATING	NON-PART
						-		2-608-012	S.A.P. 002-608-01
						TOTAL ESTIMATED		UNTY	COUNTY
		ITEM NO.	ITEM DESCRIPTION	NOTES	UNIT	QUANTITIES		UNII	COONII
						~	ROADWAY	STORM SEWER	ROADWAY
TAB	SHEET NO.						QUANTITY	QUANTITY	QUANTITY
		2021.501	MOBILIZATION		LUMP SUM	1	1		
		2031.502	FIELD OFFICE TYPE D		EACH	1	1		
В	8	2101.524	CLEARING		TREE	1	1		
В	8	2101.524			TREE	1	1		
I	90	2102.503	PAVEMENT MARKING REMOVAL		LIN FT	17180	17180		
F	78	2104.502	REMOVE DRAINAGE STRUCTURE		EACH	6	6		
K	137	2104.502	REMOVE SIGN TYPE SPECIAL		EACH	6	6		
J	137	2104.502	REMOVE SIGN TYPE C		EACH	98	98		
K	137	2104.502	SALVAGE SIGN TYPE SPECIAL		EACH	27	27		
В	8	2104.503	SAWING CONCRETE PAVEMENT (FULL DEPTH)		LIN FT	353	353		
В	8	2104.503	SAWING BITUMINOUS PAVEMENT (MILL DEPTH)		LIN FT	934	934		
в	8	2104.503	SAWING BITUMINOUS PAVEMENT (FULL DEPTH)		LIN FT	5574	5574		
F	78	2104.503	REMOVE SEWER PIPE (STORM)		LIN FT	210	210		
В	8	2104.503	REMOVE CURB AND GUTTER		LIN FT	5079	5079		
В	8	2104.518	REMOVE CONCRETE PAVEMENT		SQ FT	3821	3821		
В	8	2104.518	REMOVE CONCRETE MEDIAN		SQ FT	4428	4428		
В	8	2104.518	REMOVE BITUMINOUS PAVEMENT		SQ FT	32652	32652		
в	8		REMOVE BITUMINOUS WALK		SQ FT	34491			34491
в	8		REMOVE CONCRETE WALK		SQ FT	4518	4518		
		2104.618	REMOVE STONE		SQ FT	147	147		
		0106 505		(D)					
A	7		EXCAVATION - COMMON	(P)	CU YD				
A	7		SELECT GRANULAR EMBANKMENT (CV)	(P)	CU YD				
A	7	2106.507	COMMON EMBANKMENT (CV)	(P)	CU YD				
		2123.510	COMMON LABORERS	(1)	HOUR	40	40		
		2123.510		(1)	HOUR	40	40		
			10 CU YD TRUCK	(1)	HOUR	40	40		
			3.0 CU YD FRONT END LOADER	(1)	HOUR	40	40		
			CRAWLER MOUNTED BACKHOE	(1)	HOUR	40	40		
			STREET SWEEPER (WITH PICKUP BROOM)	(1)	HOUR	40	40		
		2123.010		(1)					
A	7 (2211.507	AGGREGATE BASE (CV) CLASS 5	(P)	CU YD	1145	1014		131
в	8		MILL BITUMINOUS SURFACE (3.0")		SQ YD	29593	29593		
2	Ű	2202.001			~ k	25555	2,3,3,3		
С	8	2301.504	CONCRETE PAVEMENT 8"		SQ YD	866	866		
		2301 602	DRILL AND GROUT REINFORCMENT BAR (EPOXY COATED)		EACH	315	315		
		2301.002			шиси	515	515		
D	8	2357.506	BITUMINOUS MATERIAL FOR TACK COAT		GALLON	1567	1567		
D	8	2360 500	TYPE SP 12.5 WEARING COURSE MIXTURE (3,C)		TON	5402	5402		
D	-		TYPE SP 12.5 WEARING COURSE MIXTURE (3,C) TYPE SP 12.5 NON WEARING COURSE MIXTURE (3,B)				335		
	8				TON	335			
D	8		TYPE SP 12.5 BIT MIXTURE FOR PATCHING		TON	31	31		EE0
D	8	2360.509	TYPE SP 12.5 WEARING COURSE MIXTURE (2,B) (TRAIL)		TON	552			552
E	78	2451.507	FINE AGGREGATE BEDDING (CV)		CU YD	63		63	
_		0.500							
E	78		15" RC PIPE SEWER DES 3006 CL V 24" RC PIPE SEWER DES 3006 CL III		LIN FT LIN FT	319 13		319	
E			IZAN DA DIDE CEMED NEC RANK OT TIT						

DESIGNEE TJT DRAWN TJT CHECKED CLC

 NOTES:

 (1)
 COMMON LABOR AND EQUIPMENT THAT MAY BE NEEDED, FOR USE AT THE DISCRETION OF ENGINEER FOR EXPLORATORY EXCAVATION DURING REMOVAL AND INSTALLATION OF STRUCTURES.

05/26/2020

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

DATE _____

÷Ė

loch CODY L CHRISTIANSON LIC. NO. 57052

(P) DENOTES PLAN QUANTITY

AutoCAD PDF (General Documentation).pc3 12:59 PM BMI Trans.ctb

aylorts /1/2020	H: \AKC0\T43118096\CAD\C3D\plans\Misc\118096_SEQ01		SEO4 dwg
, t	H: \AKCU\143118096\CAD\C3D\plans\Misc\118096_SEQ01	-	SEQ4.dwg

			_								
	A POLTON	12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 55337 Phone: (952) 830-0509 Email: Burnsville@bolton-menk.com www.bolton-menk.com	REV	BY	DATE	S.P. 002-608-012	SHEET				
	BOLTON		Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com	BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509		BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509		TJT	07/01/20	CSAH 8 RECONSTRUCTION	3R of
_	VIVE MENK										
						STATEMENT OF ESTIMATED QUANTITIES	189				
							100				

					PARTIC	CIPATING	NON-PART		
							S.P. 00	2-608-012	S.A.P. 002-608-012
						TOTAL ESTIMATED	со	UNTY	COUNTY
		ITEM NO.	ITEM DESCRIPTION	NOTES	UNIT	QUANTITIES	ROADWAY	STORM SEWER	ROADWAY
	SHEET NO.						QUANTITY	QUANTITY	QUANTITY
TAB E	78	2503 602	CONNECT INTO EXISTING STORM SEWER		EACH	6	QUANTITI	6	QUANTITI
E	78		CONNECT INTO EXISTING DIGINA SHUER		EACH	5		5	
-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2303.002			Brieff	3			
		2504.602	RELOCATE HYDRANT		EACH	1	1		
G	78		CASTING ASSEMBLY		EACH	16		16	
G	78	2506.502	ADJUST FRAME AND RING CASTING		EACH	16		16	
E	78	2506 503	CONSTRUCT DRAINAGE STRUCTURE DESIGN 48-4020		LIN FT	50		50	
	,,,,	2300.303	CONSTRUCT DIGHTNAGE STRUCTURE DESTON 40 4020		DIN II	50		50	
		2506.521	FURNISH AND INSTALL CASTING	(3)	EACH	2		2	
Е	78	2506.602	CONSTRUCT DRAINAGE STRUCTURE DESIGN SPECIAL 1		EACH	1		1	
Е	78	2506.602	CONSTRUCT DRAINAGE STRUCTURE DESIGN SPECIAL 2		EACH	1		1	
		0.55							
С	8		4" CONCRETE WALK		SQ FT	4085	4085		
С	8	2521.518	6" CONCRETE WALK		SQ FT	6490	6490		
С	8	2531 503	CONCRETE CURB AND GUTTER DESIGN B418 (MOD)	(2)	LIN FT	1160	1160		
c	8		CONCRETE CURB AND GUTTER DESIGN B410 (MOD)	(2)	LIN FT	71	71		
С	8		CONCRETE CURB AND GUTTER DESIGN B618		LIN FT	2363	2363		
С	8	2531.503	CONCRETE CURB AND GUTTER DESIGN B624		LIN FT	780	780		
С	8	2531.503	CONCRETE CURB DESIGN V10		LIN FT	13			13
С	8	2531.504	6" CONCRETE DRIVEWAY PAVEMENT		SQ YD	64	64		
С	8	2531.618	TRUNCATED DOMES		SQ FT	792	792		
		2563 601	TRAFFIC CONTROL		LUMP SUM	1	1		
		2303.001			HOMI SOM	1	1		
I	90	2563.602	RAISED PAVEMENT MARKER TEMPORARY		EACH	906	906		
		2563.610	POLICE OFFICER		HOUR	40	40		
		2563.613	PORTABLE CHANGEABLE MESSAGE SIGN		UNIT DAY	60	60		
L	137	2564 502	OBJECT MARKER TYPE X4-2		EACH	7	7		
J	137		SIGN PANELS TYPE C		SQ FT	691	691		
K	137	2564.602	INSTALL SIGN TYPE SPECIAL		EACH	27	27		
			FLASHING BEACON SYSTEM A		SYSTEM	1	1		
			FLASHING BEACON SYSTEM B		SYSTEM	1	1		
			PEDESTRIAN CROSSWALK FLASHER SYSTEM A PEDESTRIAN CROSSWALK FLASHER SYSTEM B		SYSTEM SYSTEM	1	1		
			PEDESTRIAN CROSSWALK FLASHER SISTEM B		SYSTEM	1	1		
			REVISE SIGNAL SYSTEM A		SYSTEM	1	1		
			REVISE SIGNAL SYSTEM B		SYSTEM	1	1		
			REVISE SIGNAL SYSTEM C		SYSTEM	1	1		
			TEMPORARY SIGNAL SYSTEM A		SYSTEM	1	1		
		2565.616	TEMPORARY SIGNAL SYSTEM B		SYSTEM	1	1		
		2572 501			LIMD CIM	1	1		
			STABILIZED CONSTRUCTION EXIT EROSION CONTROL SUPERVISOR	-	LUMP SUM	1	1		
Н	88		STORM DRAIN INLET PROTECTION		EACH	50	50		
Н	88		SILT FENCE, TYPE MS	-	LIN FT	2605	2605		
Н	88		SEDIMENT CONTROL LOG TYPE WOOD CHIP	1	LIN FT	40	40		
Н	88	2574.508	FERTILIZER TYPE 3		POUND	460	460		
H	88	2575.505	SEEDING		ACRE	2.3	2		

(2) SEE DETAIL IN MISCELLANEOUS DETAILS
 (3) ITEM INCLUDES ALL LABOR AND MATERIALS TO FURNISH AND INSTALL TRENCH FRAME AND SOLID GRATE SHOWN ON SHEET 80 OF THE DRAINAGE DETAILS. ITEMS LOCATED STA 101+63.31, 43' LT AND 149+55.60, 34' LT. SEE SHEETS 46 AND 53 FOR PLAN LOCATION.

AKCO\T43118096\CAD\C3D\plans\Misc\118096_SEQ01 - SEQ4.dwg

EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	4
				OF
			STATEMENT OF ESTIMATED QUANTITIES	189
				100

	STATEMENT OF ESTIMATED QUANTITIES								
				PARTI	CIPATING	NON-PART			
							S.P. 0	02-608-012	S.A.P. 002-608-012
		ITEM NO.	ITEM DESCRIPTION	NOTES	UNIT	TOTAL ESTIMATED	C	DUNTY	COUNTY
		TIEM NO.	TIEM DESCRIPTION	NOIES	ONII	QUANTITIES	ROADWAY	STORM SEWER	ROADWAY
TAB	SHEET NO.						QUANTITY	QUANTITY	QUANTITY
Н	88	2575.508	SEED MIXTURE 25-151		POUND	460	460		
Н	88	2575.508	HYDRAULIC REINFORCED FIBER MATRIX		POUND	8977	8977		
Н	88	2575.523	RAPID STABILIZATION METHOD 3		M GALLON	69	69		
I	90	2581.503	REMOVABLE PREFORM PAVEMENT MARKING TAPE		LIN FT	28905	28905		
I	90	2581.603	REMOVABLE PREFORMED PLASTIC MASK (BLACK)		LIN FT	400	400		
I	90	2581.618	REMOVABLE PREFORMED PLASTIC MASK (BLACK)		SQ FT	96	96		
I	90	2582.503	4" SOLID LINE PAINT		LIN FT	11600	11600		
I	90	2582.503	4" DOUBLE SOLID LINE PAINT		LIN FT \Lambda	3000	3000	~	
М	138	2582.503	4" SOLID LINE MULTI - COMP		LIN FT (16341	16341	}	
М	138	2582.503	4" DOUBLE SOLID LINE MULTI - COMP		LIN FT	2363	2363	~	
М	138	2582.503	4" DOTTED LINE MULTI - COMP		LIN FT	83	83		
М	138	2582.503	8" DOTTED LINE MULTI-COMP		LIN FT	56	56		
М	138	2582.503	4" BROKEN LINE MULTI-COMP		LIN FT	810	810		
М	138	2582.503	24" SOLID LINE PREFORM THERMO GROUND IN ESR		LIN FT	91	91		
					L A		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	
М	138	2582.518	PAVEMENT MESSAGE PREFORM THERMOPLASTIC		SQ FT (874	874	}	
М	138	2582.518	CROSSWALK PREFORM THERMOPLASTIC		SQ FT	3926	3926		
М	138	2582.518	CROSSWALK PREFORM THERMOPLASTIC GROUND IN ESR		SQ FT	676	676		
I	90	2582.518	PAVEMENT MESSAGE PAINT		SQ FT	80	80		
М	138	2582.618	PAVEMENT MARKING SPECIAL		SQ FT	945	945		

DESIGNED TJT DRAWN TJT CHECKED CLC

50	
201	
ar 1	
5 ch	
2 z d	H:\AKCO\T43118096\CAD\C3D\plans\Misc\118096_SEQ01 - SEQ4.dwg

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME
OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL
ENGINEER UNDER/THE LAWS OF THE STATE OF MINNESOTA.
loch Chiti
CODY L. CHRISTIANSON
57052 DATE 05/26/2020

EV	BY	DATE	S.P. 002-608-012	SHEET
1\	ZAP	6/24/20	CSAH 8 RECONSTRUCTION	5R 0F
_			STATEMENT OF ESTIMATED QUANTITIES	189
-			STATEMENT OF ESTIMATED QUANTITIES	109

SOIL AND CONSTRUCTION NOTES

- 1. TOP OF SUBGRADE ON THIS PROJECT IS DEFINED AS THE BOTTOM OF THE CLASS 5.
- 2. PRIOR TO CONSTRUCTION OR SUBCUTTING, STRIP ALL IN-PLACE SLOPE DRESSING MATERIALS IN AREAS TO BE DISTURBED BY CONSTRUCTION.
- SLOPE DRESSING EXCAVATION IS INCLUDED IN EXCAVATION COMMON. EXCAVATED SLOPE DRESSING 3. SHALL BE REUSED AS SLOPE DRESSING EMBANKMENT AT MINIMUMN 6" DEPTH AS DIRECTED BY THE ENGINEER. SLOPE DRESSING EMBANKMENT IS INCLUDED IN THE COMMON EMBANKMENT (CV).
- 4. EXISTING / STRIPPED TOPSOIL SHALL BE STOCK PILED WITHIN THE PROJECT LIMITS.
- 5. PROVIDE A FULL DEPTH SAWCUT WHERE PLACING NEW PAVEMENT NEXT TO INPLACE PAVEMENT TO ENSURE A UNIFORM JOINT.
- 6. EMBANKMENT MATERIALS USED BENEATH THE ROAD CORE AND SIDEWALK AREAS SHALL MEET THE REQUIREMENTS OF SELECT GRADING MATERIALS PER MnDOT SPECIFICATION 2106.
- 7. WHERE EXCAVATIONS ARE MADE BELOW THE TOP OF SUBGRADE FOR INSTALLATION OF UTILITIES, BACKFILL WITH LIKE MATERIAL MEETING THE REQUIREMENTS OF SELECT GRADING MATERIAL. ORGANIC SOILS AND MATERIALS CONSIDERED UNSTABLE OR NON-STRUCTURAL GRADING MATERIALS SHALL NOT BE REUSED.
- THE FOLLOWING COMPACTION TESTING SHALL BE USED: 8.
 - NON-STRUCTURAL GRADING MATERIALS: QUALITY COMPACTION METHOD (SPEC 2106) Α.
 - TRENCHES: QUALITY COMPACTION METHOD (SPEC 2451) В.
 - SELECT GRADING MATERIAL: QUALITY COMPACTION METHOD
 - GRANULAR, SELECT GRANULAR, & AGGREGATE BASE MATERIALS: QUALITY COMPACTION METHOD D.
- 9. IN ANY CASE WHERE GRANULAR EMBANKMENTS OR BACKFILL JOIN NON-GRANULAR SOIL EMBANKMENTS OR BACKFILL, PROVIDE A 1(V): 20(H) TRANSITION TAPER BETWEEN THE CHANGES IN MATERIAL TO PREVENT AN ABRUPT SOILS DIFFERENTIAL. THE 1(V):20(H) TAPER SHALL BE CONSTRUCTED SO THAT THE GRANULAR BACKFILL MATERIAL OVERLAYS THE ADJACENT NON-GRANULAR SOIL BACKFILL.
- 10. WHERE CONNECTING NEW SURFACING ADJACENT TO ANY INPLACE PAVEMENTS TO BE WIDENED, CUT VERTICALLY TO THE BOTTOM OF THE INPLACE SURFACING OR THE BOTTOM OF THE NEW SURFACING DESIGN, WHICHEVER IS DEEPER. THEN AT A 2(V):1(H) SLOPE TO THE TOP OF THE RECOMMENDED SUBGRADE. DO NOT UNDERMINE ADJACENT PAVEMENTS.
- 11. AS A PRECAUTIONARY MEASURE FROM A SOILS STANDPOINT, TRAFFIC LANES TO BE USED ADJACENT TO CONSTRUCTION MUST BE DELINEATED TO KEEP VEHICLES A SAFE DISTANCE AWAY FROM THE ADJACENT EXCAVATION. THE DELINEATION SHOULD COINCIDE WITH POINTS ESTABLISHED BY PROJECTING 1(V):2(H) OR GREATER (FLATTER) SLOPE BETWEEN THE EDGE OF THE TRAFFIC SURFACE AND THE BOTTOM OF THE EXCAVATION.
- 12. ALL DISTURBED ROADWAY MATERIALS SUCH AS CONCRETE, BITUMINOUS, AND AGGREGATES MAY BE UTILIZED ACCORDING TO MNDOT SPECIFICATIONS AND PROJECT SPECIAL PROVISIONS FOR REUSED MATERIALS THE CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTING AS REQUIRED. MATERIALS NOT UTILIZED ON THIS PROJECT WILL BECOME THE PROPERTY OF THE CONTRACTOR AND DISPOSED OFF THE RIGHT OF WAY IN ACCORDANCE WITH MnDOT SPECIFICATION 2104.
- 13. THE CONTRACTOR IS HEREBY REMINDED OF HIS RESPONSIBILITY UNDER STATE LAW TO CONTACT ALL UTILITIES THAT MAY HAVE FACILITIES IN THE AREA. CONTACT MUST BE MADE THROUGH GOPHER STATE ONE-CALL.
- 14. THE CONTRACTOR SHALL PROVIDE A BITUMINOUS TACK COAT BETWEEN ALL BITUMINOUS LIFTS AND PRIOR TO PLACING ANY BITUMINOUS MIXTURES ON EXISTING PAVEMENT OR MILLED SURFACES IN ACCORDANCE WITH MNDOT SPECIFICATION 2357.
- 15. ALL SLOPES IN THIS PLAN ARE 1 VERTICAL TO X HORIZONTAL.
- 16. NO EXTRA PAYMENT WILL BE MADE FOR STOCKPILING CONSTRUCTION MATERIAL OR RECYCLED MATERIAL.
- 17. EXISTING PAVEMENT DEPTH IS ESTIMATED TO BE 6" ALONG THE CORRIDOR.
- 18. HEAVY EQUIPMENT SHALL NOT BE USED FOR THE REMOVAL AND CONSTRUCTION OF THE BITUMINOUS TRAIL. THE CONTRACTOR SHALL COORDINATE WITH ST PAUL REGIONAL WATER SERVICES.

	THE FOLLOWING STANDARD P
	HIGHWAY ADMINISTRATION
	STANDA
PLATE NO.	
3000M	REINFORCED CONCRETE PIPE (6 SHEETS)
3006H	GASKET JOINT FOR R.C. PIPE (2 SHEET
3007F	SHEAR REINFORCEMENT FOR PRECAST DRA
3145G	CONCRETE PIPE OR PRECAST BOX CULVER
4005M	MANHOLE OR CATCH BASIN TYPE A & B C
4011E	PRECAST CONCRETE BASE
4020J	MANHOLE OR CATCH BASIN (FOR USE WIT
4101D	RING CASTING FOR MANHOLE OR CATCH E
4108F	ADJUSTING RINGS FOR CATCH BASINS AN
4110F	COVER CASTING FOR MANHOLE (FOR USE
4132G	CATCH BASIN FRAME CASTING (FOR SQUA
4154B	CATCH BASIN GRATE CASTING - CASTING
4180J	MANHOLE OR CATCH BASIN STEP
7020K	CONCRETE CURB DESIGN B, DESIGN V, D
7038A	DETECTABLE WARNING SURFACE TRUNCATE
7100H	CONCRETE CURB AND GUTTER (DESIGN B
7109C	MEDIAN NOSE AND ISLAND (UNDIVIDED T
7111J	INSTALLATION OF CATCH BASIN CASTING
7113A	CONCRETE APPROACH NOSE DETAIL
8000J	CHANNELIZERS
8150C	INSTALLATION OF CULVERT MARKERS
-	

	TABUI	ATION INDEX
TABLE	SHEET NO.	TABULATION
A	7	EARTHWORK TABULATION
в	8	MISCELLANEOUS REMOVALS
с	8	CONCRETE
D	8	BITUMINOUS
E	78	DRAINAGE TABULATION
F	78	STORM SEWER REMOVAL TABULATION
G	78	CASTING ASSEMBLY
н	88	EROSION CONTROL & TURF ESTABLISHMENT
I	90	TEMPORARY TRAFFIC CONTROL
J	137	SIGN PANELS TYPE C
ĸ	137	SALVAGE & INSTALL SIGN TYPE SPECIAL
L	137	OBJECT MARKER & DELINEATORS
м	138	PERMANENT PAVEMENT MARKINGS & STRIPING

	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINGER UNDERATHQ LAWS OF THE STATE OF MINNESOTA.	DESIGNED TJT		BOLTON	12224 NICOLLET AVENUE	REV	BY
		DRAWN	1 / /WA 3		BURNSVILLE, MINNESOTA 55337		
	loch that	TJT		O MENIZ	Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com		
	CODY LA CHRISTIANSON	CHECKED	1 X I V	& MENK	www.bolton-menk.com		
CO\T43118096\CAD\C3D\plans\Misc\118096_Std_Plates.dwg	LIC. NO. 57052 DATE 05/26/2020	CLC					

\AK

LATES, APPROVED BY THE FEDERAL
, SHALL APPLY ON THIS PROJECT
RD PLATES
DESCRIPTION
DESCRIPTION
'S)
AINAGE STRUCTURES
RT TIES
CONE SECTIONS PRECAST - DESIGN F
'H OR WITHOUT TRAFFIC LOADS) (2 SHEETS)
NASIN
ID MANHOLES
IN ALL TRAFFIC AREAS) - CASTING NO. 715 AND 716
RE GRATE) - CASTING NO. 805
G NO. 816
DESIGN S, DESIGN DR AND DESIGN BR
D DOMES
and DESIGN V)
O DIVIDED ROADWAY)
S (CONCRETE CURB AND GUTTER)

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	6 0F
_			STANDARD PLATES & CONSTRUCTION NOTES	
				105

			1	EARTHWORK	K TABULATION	I		A
						2106		2211
	STATIC	ON TO	STATION	LOCATION	EXCAVATION - COMMON(2)	COMMON EMBANKMENT (CV) (1)	SELECT GRANULAR EMBANKMENT (CV)	AGGREGATE BASE (CV) CLASS 5 (3)
					CU YD	CU YD	CU YD	CU YD
				c.s.	A.H. 8: S.P. 002	2-608-012		}
	100+00.00	TO	114+00.00	RT/LT	279	25	388	445
	114+00.00	TO	128+00.00	RT/LT	76	76		230
	128+00.00	TO	142+00.00	RT/LT	478	411		323
	142+00.00	TO	151+34.66	RT/LT				16
			•	SUBTOTAL	833	512	388	1014
			C.5	S.A.H. 8: S.	P. 002-608-012	(NON-PARTICIPAT	ING)	{
	100+00.00	TO	114+00.00	LT				120
¥	128+00.00	TO	142+00.00	LT				11
				SUBTOTAL				131
				TOTALS	833	512	388	1145
	L						1	tunun

NOTES: (1) COMMON EMBANKMENT INCLUDES 6" MIN. DEPTH OF TOPSOIL.

(2) TOPSOIL STRIP IS INCLUDED IN THE EXCAVATION-COMMON QUANTITY. (3) AGGREGATE BASE CLASS 5 INCLUDES 4" UNDER 4" AND 6" CONCRETE WALK.

	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL	DESIGNED T IT			12224 NICOLLET AVENUE	REV	BY
	ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DRAWN		BOLTON	BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509	凎	TJT
	CODY LAND	TJT CHECKED	VIV		Email: Burnsville@bolton-menk.com		⊢
\CAD\C3D\plans\Tabs\118096_ew.dwg	LIC. NO. 57052 DATE 05/26/2020	CLC			www.bolton-menk.com		

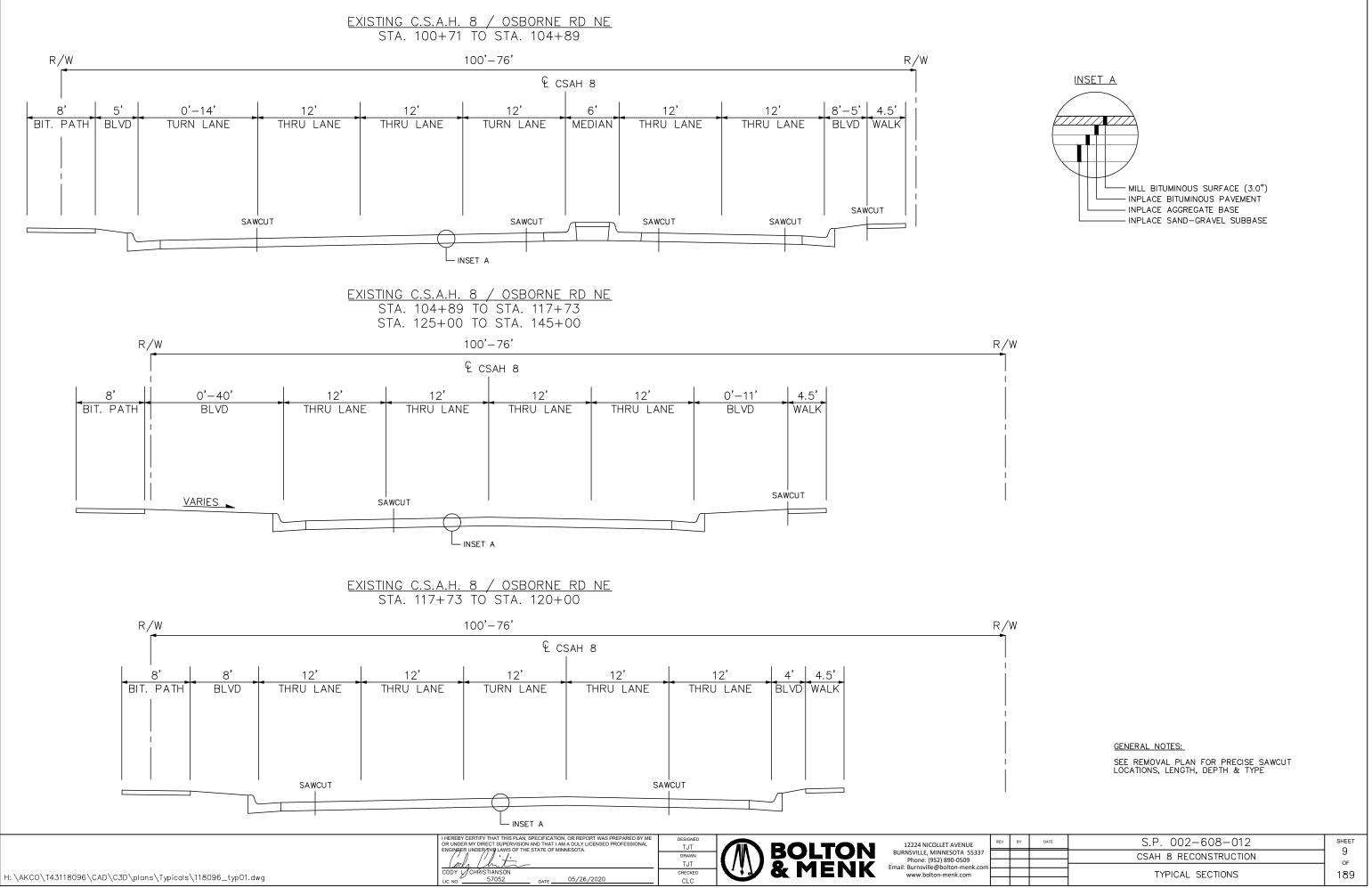
V	BY	DATE	S.P. 002-608-012	SHEET
Y	TJT	07/01/20	CSAH 8 RECONSTRUCTION	7R 0F
			EARTHWORK TABULATION	189

						MI	SCELLANEO	JS REMOVAL	S						В
				2101	2101	2104	2104	2104	2104	2104	2104	2104	2104	2104	2232
STATION TO STATION		LOCATION	CLEARING	GRUBBING	SAWING CONCRETE PAVEMENT (FULL DEPTH)	SAWING BITUMINOUS PAVEMENT (MILL DEPTH)	SAWING BITUMINOUS PAVEMENT (FULL DEPTH)	REMOVE CURB AND GUTTER	REMOVE CONCRETE PAVEMENT	REMOVE CONCRETE MEDIAN	REMOVE CONCRETE WALK	REMOVE BITUMINOUS PAVEMENT	REMOVE BITUMINOUS WALK	MILL BITUMINOUS SURFACE (3.0")	
				TREE	TREE	LIN FT	LIN FT	LIN FT	LIN FT	SQ FT	SQ FT	SQ FT	SQ FT	SQ FT	SQ YD
							C.S.A.H.	8: S.P. 002-	608-012		·	•			
100+00.00	TO	107+00.00	RT/LT	1	1	23	177	1784	1654	745	2283	531	6059	6532	3603
107+00.00	TO	114+00.00	RT/LT			124	111	238	347	1262	122	740	437	4239	3927
114+00.00	TO	121+00.00	RT/LT			20	64	1047	1027		573	976	7264	5373	3970
121+00.00	TO	128+00.00	RT/LT			70	49	1372	1285	1735	1450	667	12937	4131	3768
128+00.00	TO	135+00.00	RT/LT			25	128	491	275			651	3373	4171	3928
135+00.00	TO	142+00.00	RT/LT			35	125	612	415	79		780	2501	3862	3926
142+00.00	TO	149+00.00	RT/LT			28	71		24			173		4587	4706
149+00.00	TO	151+34.66	RT/LT			28	209	30	52				81	1596	1765
			TOTALS	1	1	353	934	5574	5079	3821	4428	4518	32652	34491	29593

						CONCRE	TE					
				2301	2521	2521	2531	2531	2531	2531	2531	2531
STATION TO STATION		LOCATION	CONCRETE PAVEMENT 8"	4" CONCRETE WALK	6" CONCRETE WALK	CONCRETE CURB AND GUTTER DESIGN B418 (MOD)	CONCRETE CURB AND GUTTER DESIGN B612	CONCRETE CURB AND GUTTER DESIGN B618	CONCRETE CURB AND GUTTER DESIGN B624	CONCRETE CURB DESIGN V10	6" CONCRETE DRIVEWAY PAVEMENT	
				SQ YD	SQ FT	SQ FT	LIN FT	LIN FT	LIN FT	LIN FT	LIN FT	SQ YD
						C.S.A.H. 8	S.P. 002-60	8-012				
100+00.00	TO	107+00.00	RT/LT	413	1505	180	812			700		40
107+00.00	TO	114+00.00	RT/LT	194		580		71	54	80		
114+00.00	TO	121+00.00	RT/LT		376	1471			782			
121+00.00	TO	128+00.00	RT/LT	259	28	821			767			
128+00.00	TO	135+00.00	RT/LT		1100	1246	174		278			
135+00.00	TO	142+00.00	RT/LT		1076	1413	174		366		13	16
142+00.00	TO	149+00.00	RT/LT			674			58			8
149+00.00	TO	151+34.66	RT/LT			105			58			
			TOTALS	866	4085	6490	1160	71	2363	780	13	64

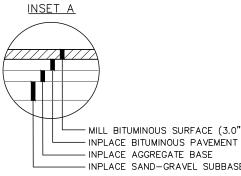
				BITUMINOU	JS			D	
				2357	2360	2360	2360	2360	
STATIC	ON TO SI	TATION	LOCATION	BITUMINOUS MATERIAL FOR TACK COAT (1)	TYPE SP 12.5 WEARING COURSE MIXTURE (3,C) (SPWEB340C)(2)	TYPE SP 12.5 NON WEARING COURSE MIXTURE (3,B) (SPNWB330B)(2)	TYPE SP 12.5 BIT MIXTURE FOR PATCHING (SPWEB340C) (2)	TYPE SP 12.5 WEARING COURSE MIXTURE (2,B)(TRAIL) (SPWEB240B)(2)	
				GALLON	TON	TON	TON	TON	
	C.S.A.H. 8: S.P. 002-608-012								
100+00.00	TO	107+00.00	RT/LT	197	680	65	4	71	
107+00.00	TO	114+00.00	RT/LT	199	684	9		73	
114+00.00	TO	121+00.00	RT/LT	217	749	67		90	
121+00.00	TO	128+00.00	RT/LT	220	758	119	23	69	
128+00.00	TO	135+00.00	RT/LT	202	697	23		71	
135+00.00	TO	142+00.00	RT/LT	208	718	52		77	
142+00.00	TO	149+00.00	RT/LT	236	812			76	
149+00.00	TO	151+34.66	RT/LT	88	304		4	25	
		•	TOTALS	1567	5402	335	31	552	

Notes:

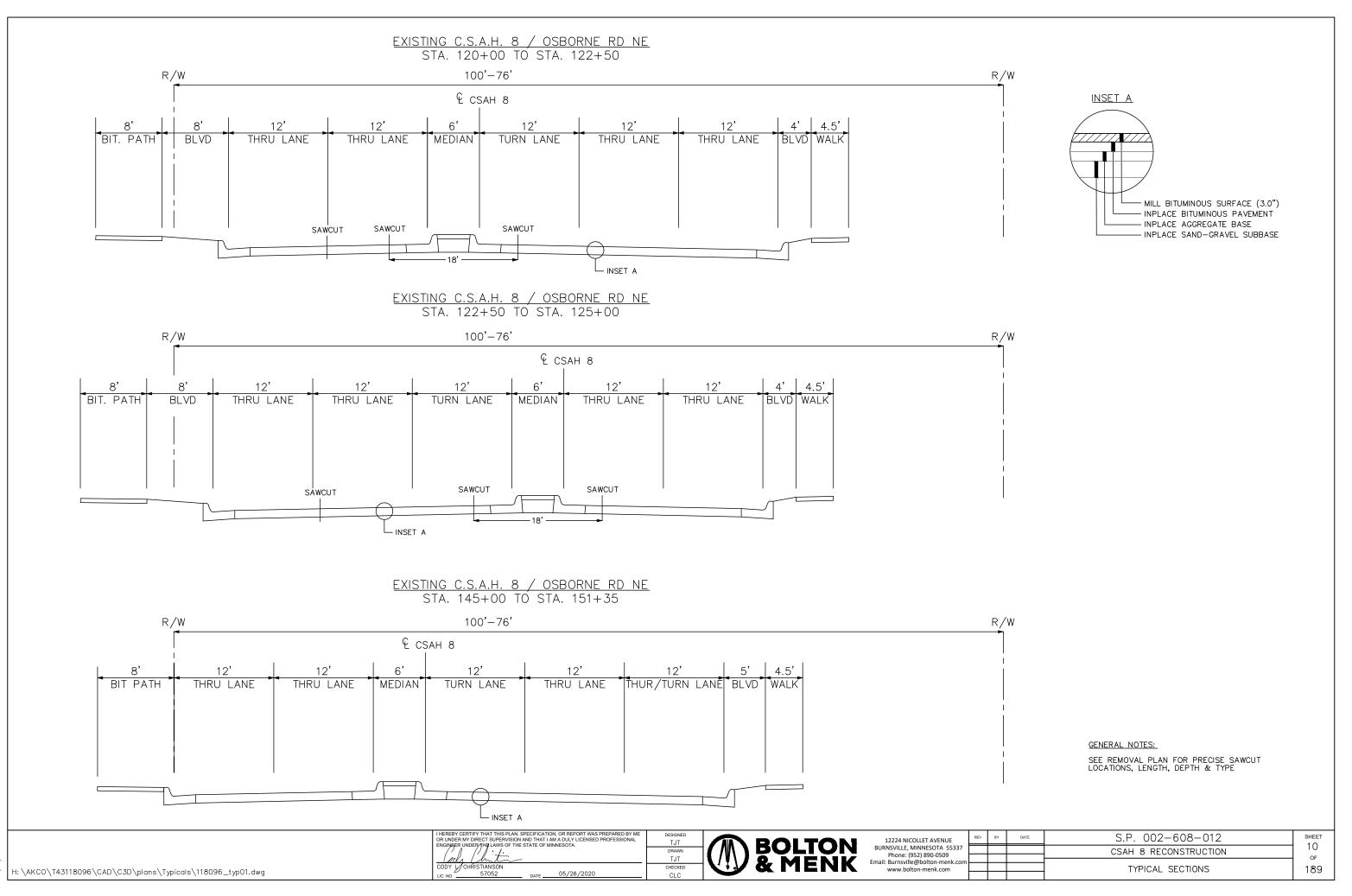

(1) APPLY AT A RATE OF 0.05 GAL/SQ YD

(2) APPLY AT A RATE OF 115 POUNDS/ SY-IN

OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL	RE
	RE
OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER HID LAWS OF THE STATE OF MINNESOTA. DRAWN DRAWN	_
III SI SU SU E AL EMAIL BURGAULADO MARCON	
CODY L/ CHRISTIANSON CHECKED Www.bolton-menk.com	
uc. NO. 57052 DATE 05/26/2020 CLC	

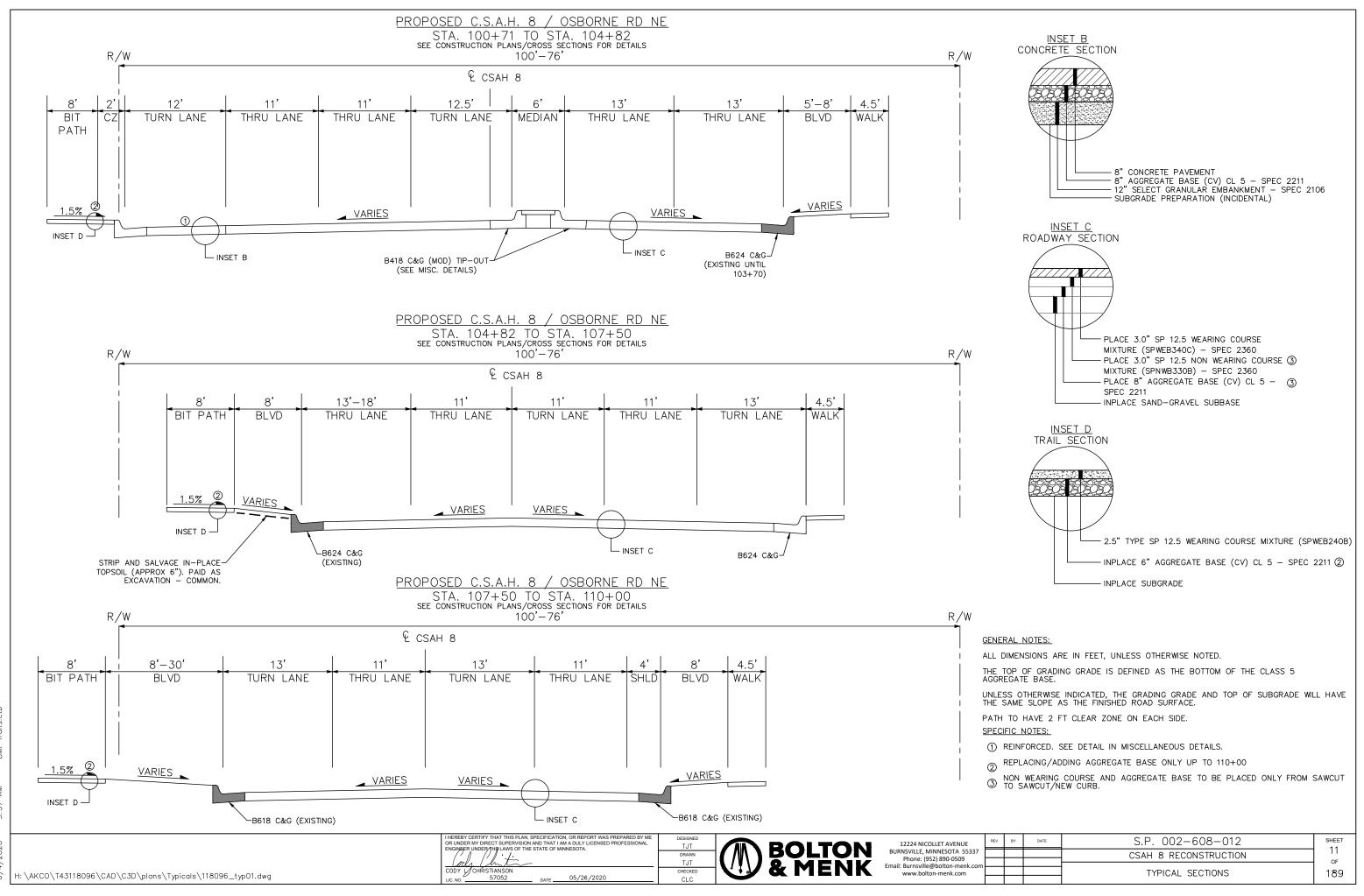

С
2531
TRUNCATED DOMES
SQ FT
8
76
140
128
184
176
56
24
792

V	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	8
				OF
			QUANTITY TABULATIONS	189
				100

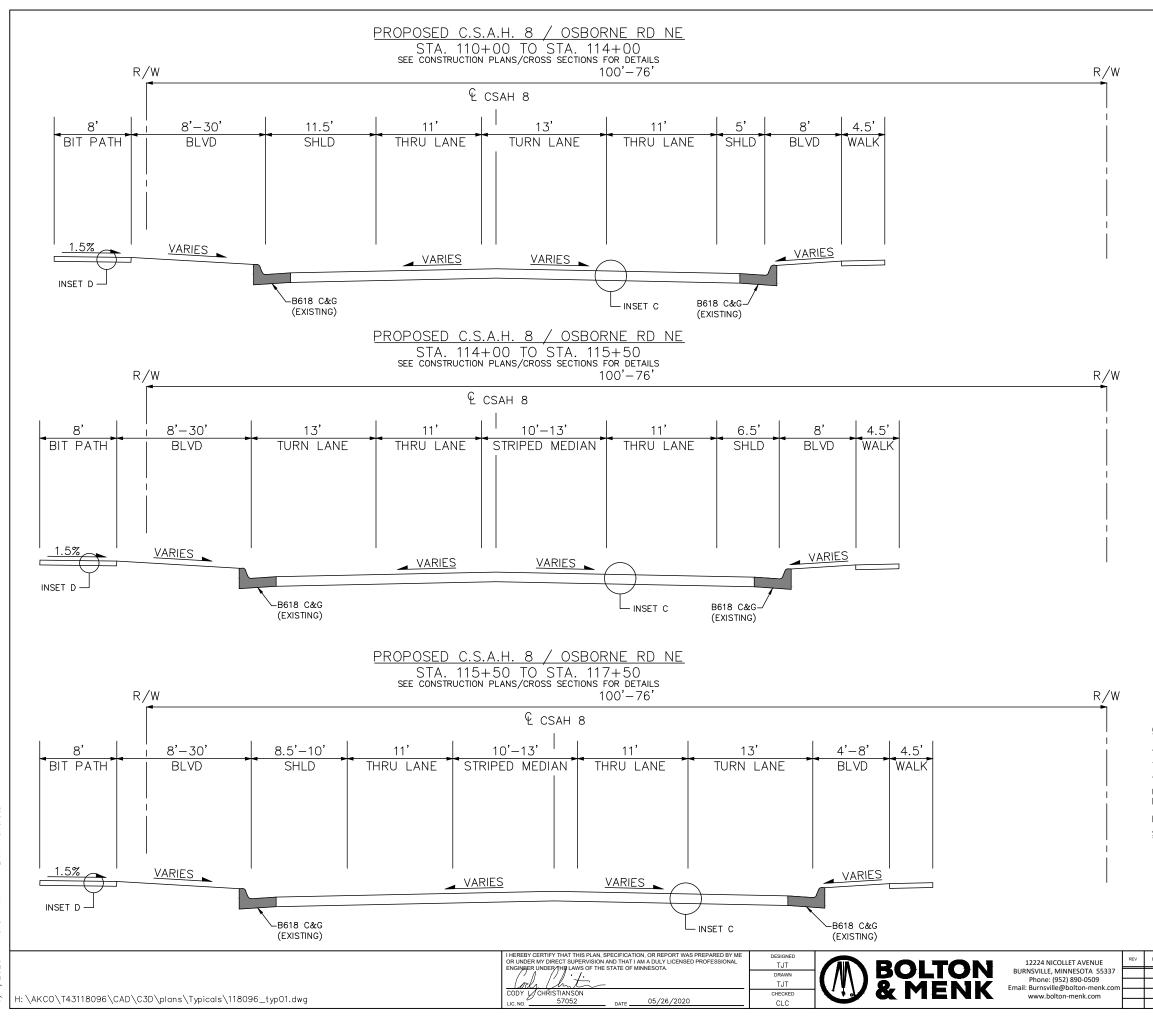


entation).pc3 Doo (General D Trans.ctb PDF BMI AutoCAD F AM 9:57 rts ⁄2020

taylor 6/4/

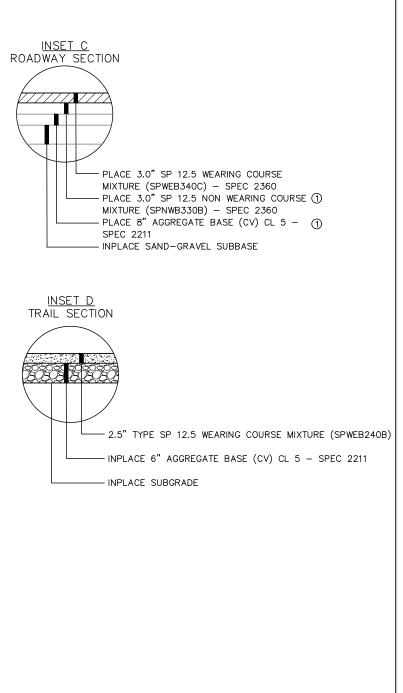


	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	9 OF
			TYPICAL SECTIONS	
_			THIORE SECTIONS	103



s AutoCAD PDF (General Documentation).pc3 020 9:57 AM BMI Trans.ctb

taylorts 6/4/2020



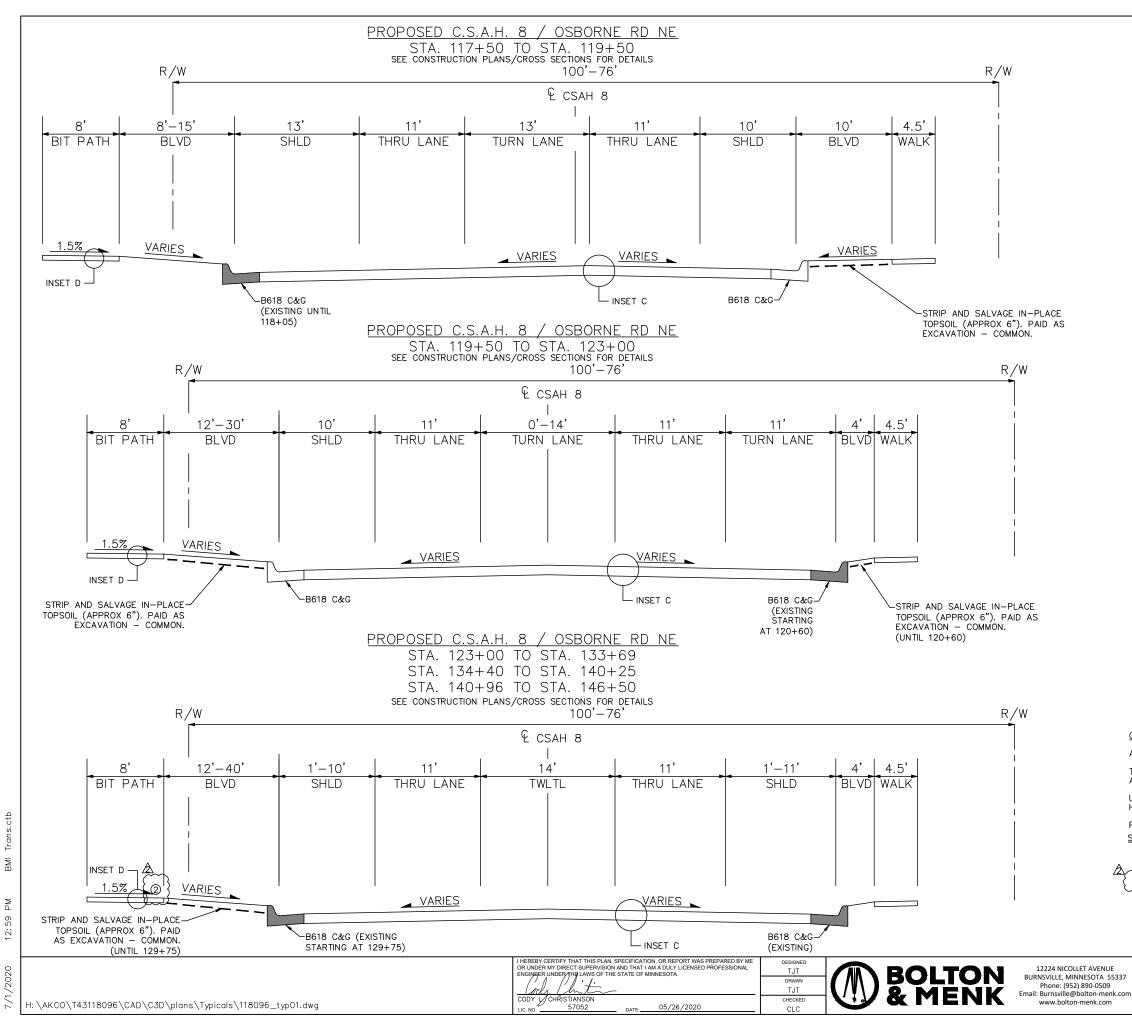
taylorts AutoCAD PDF (General Documentation).pc3 6/4/2020 9:57 AM BMI Trans.ctb

tation).pc3 Doo ctb 5 (Gen. Tron PDF BMI AutoCAD f AM 9:57

2020 taylo 6/4/

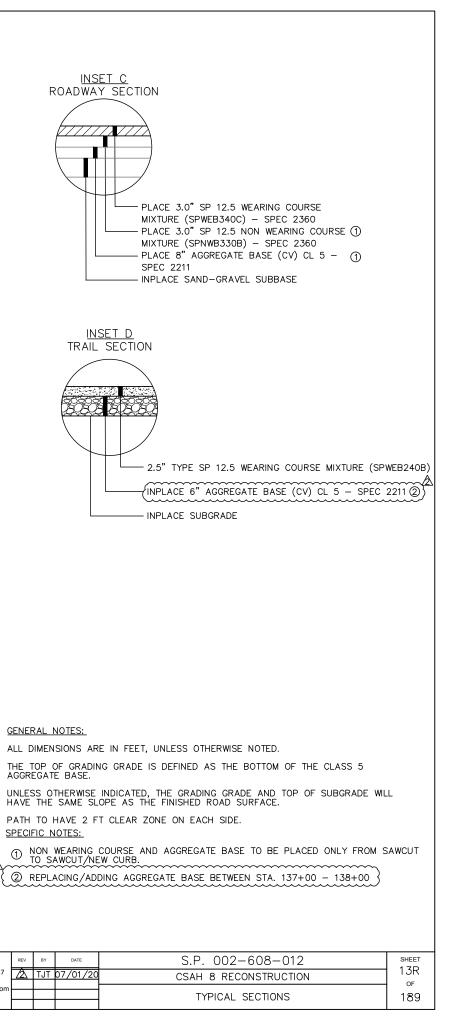
GENERAL NOTES:

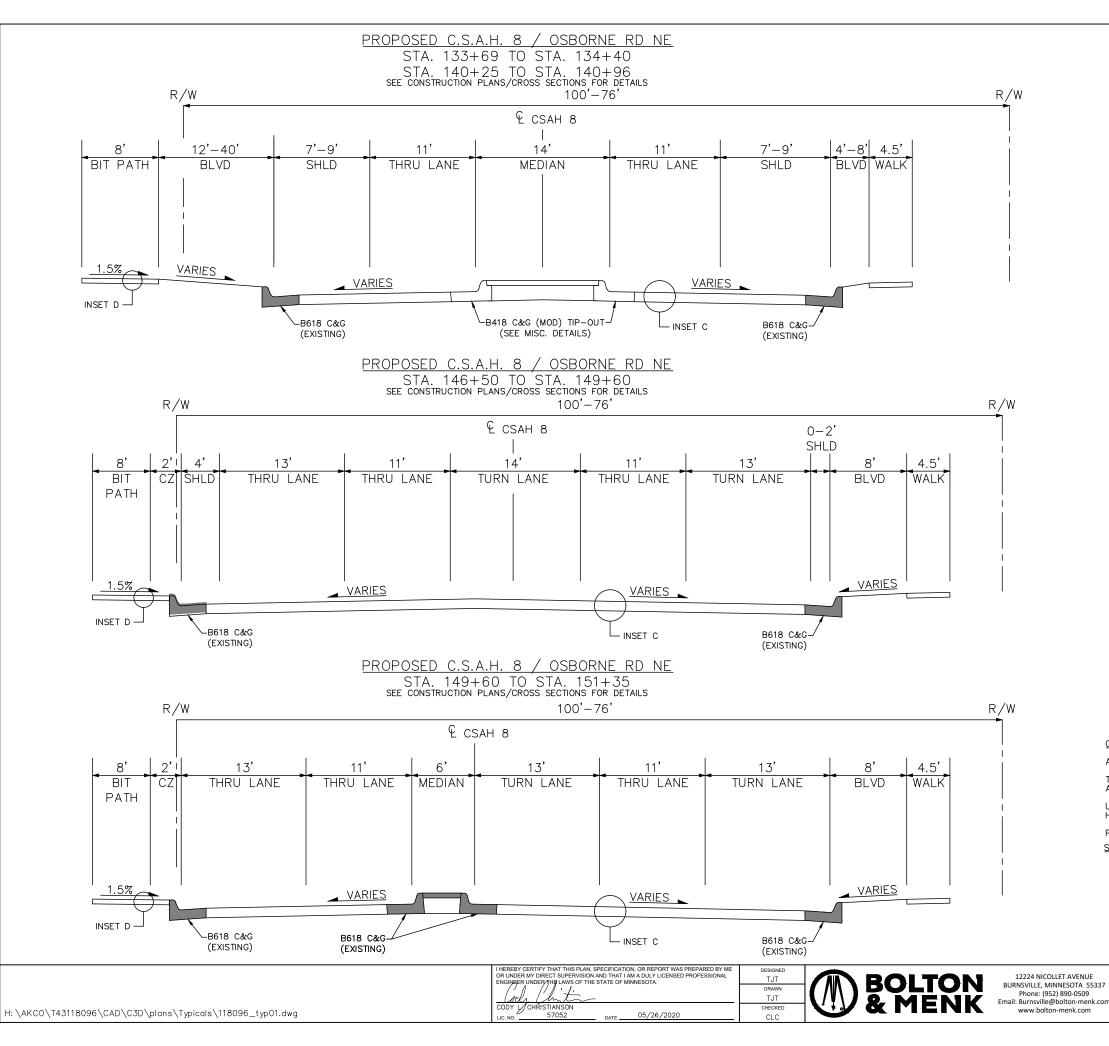
ALL DIMENSIONS ARE IN FEET, UNLESS OTHERWISE NOTED.


THE TOP OF GRADING GRADE IS DEFINED AS THE BOTTOM OF THE CLASS 5 AGGREGATE BASE.

UNLESS OTHERWISE INDICATED, THE GRADING GRADE AND TOP OF SUBGRADE WILL HAVE THE SAME SLOPE AS THE FINISHED ROAD SURFACE. PATH TO HAVE 2 FT CLEAR ZONE ON EACH SIDE.

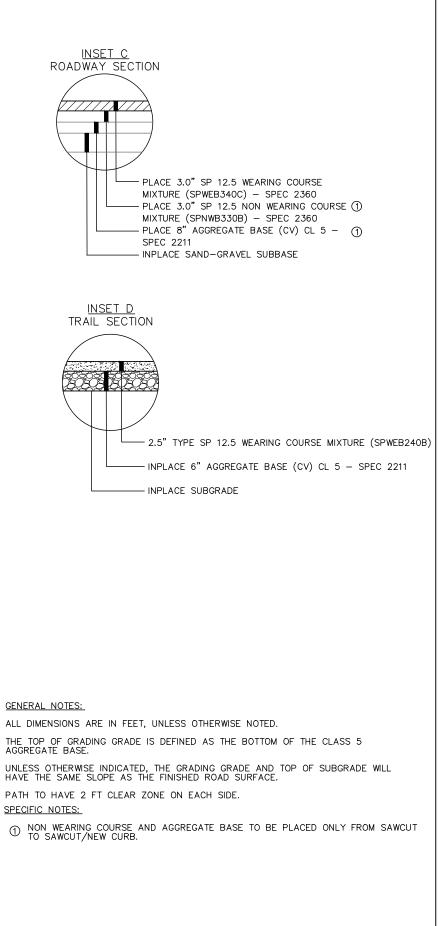
SPECIFIC NOTES:

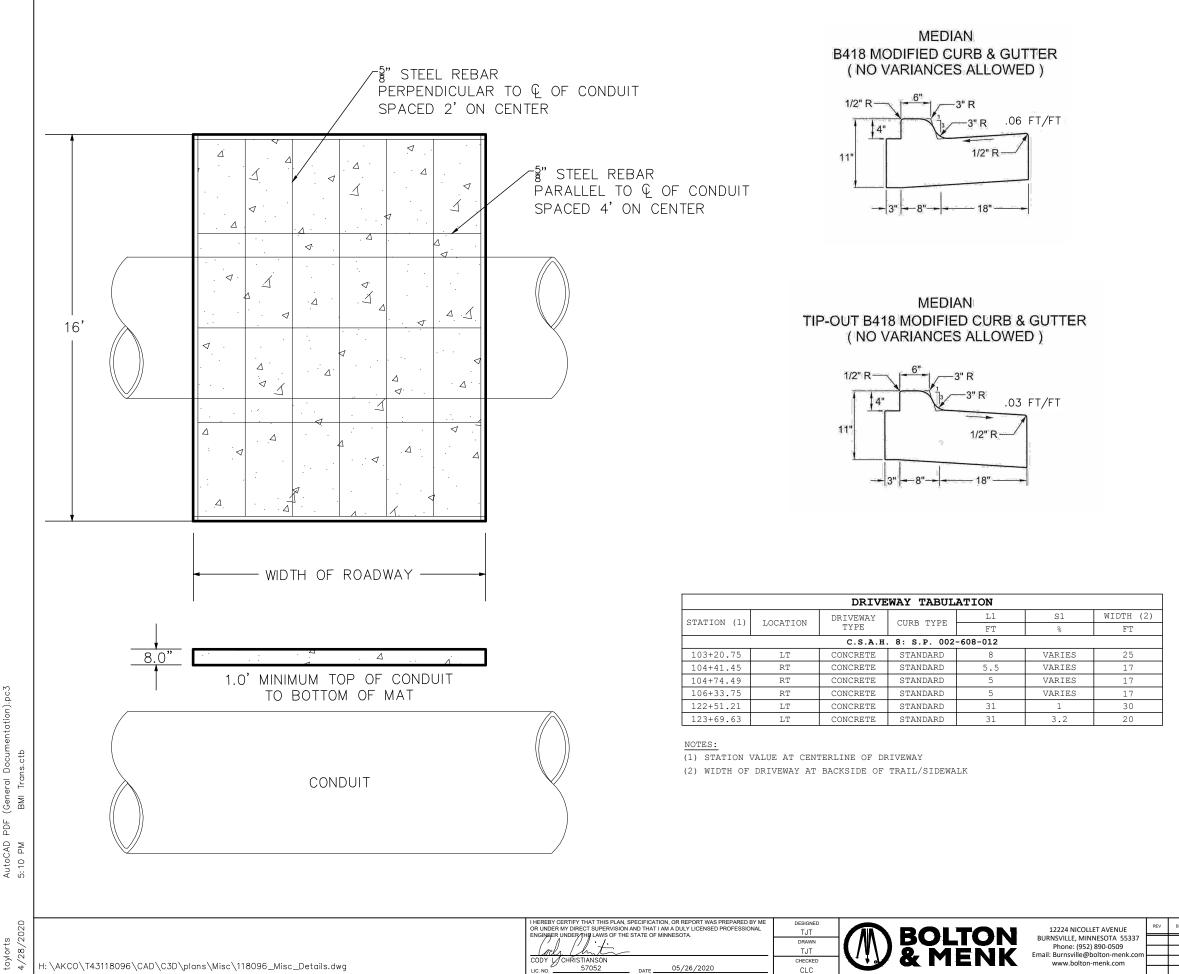

Non wearing course and aggregate base to be placed only from sawcut to sawcut/new curb.


V	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	0F
			TYPICAL SECTIONS	189

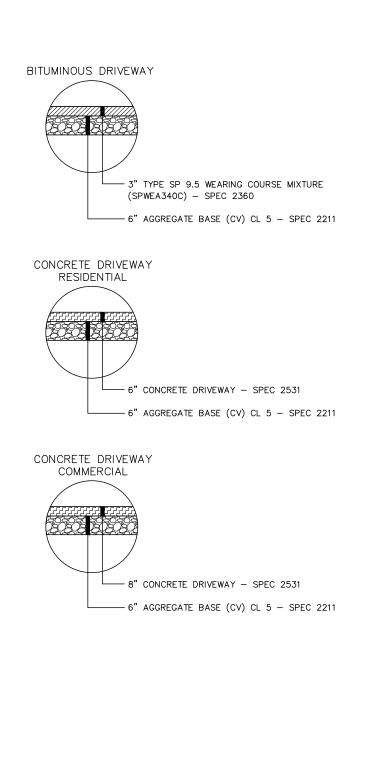
ts AutoCAD PDF (General Documer 2020 12:59 PM BMI Trans.ctb

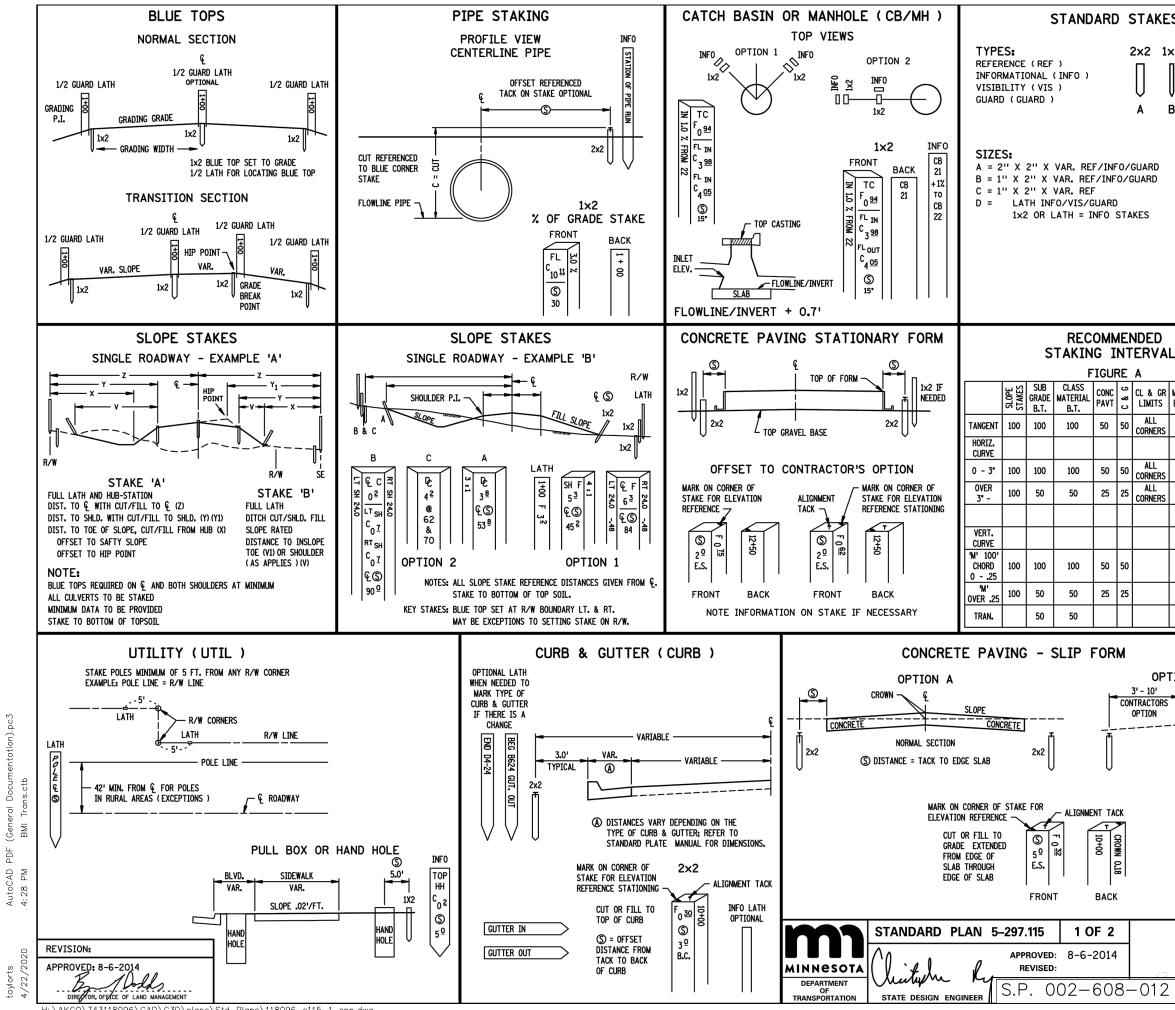
pc3




ă ctb 5 (Gen. Tran PDF BMI CAD AΜ 9:57

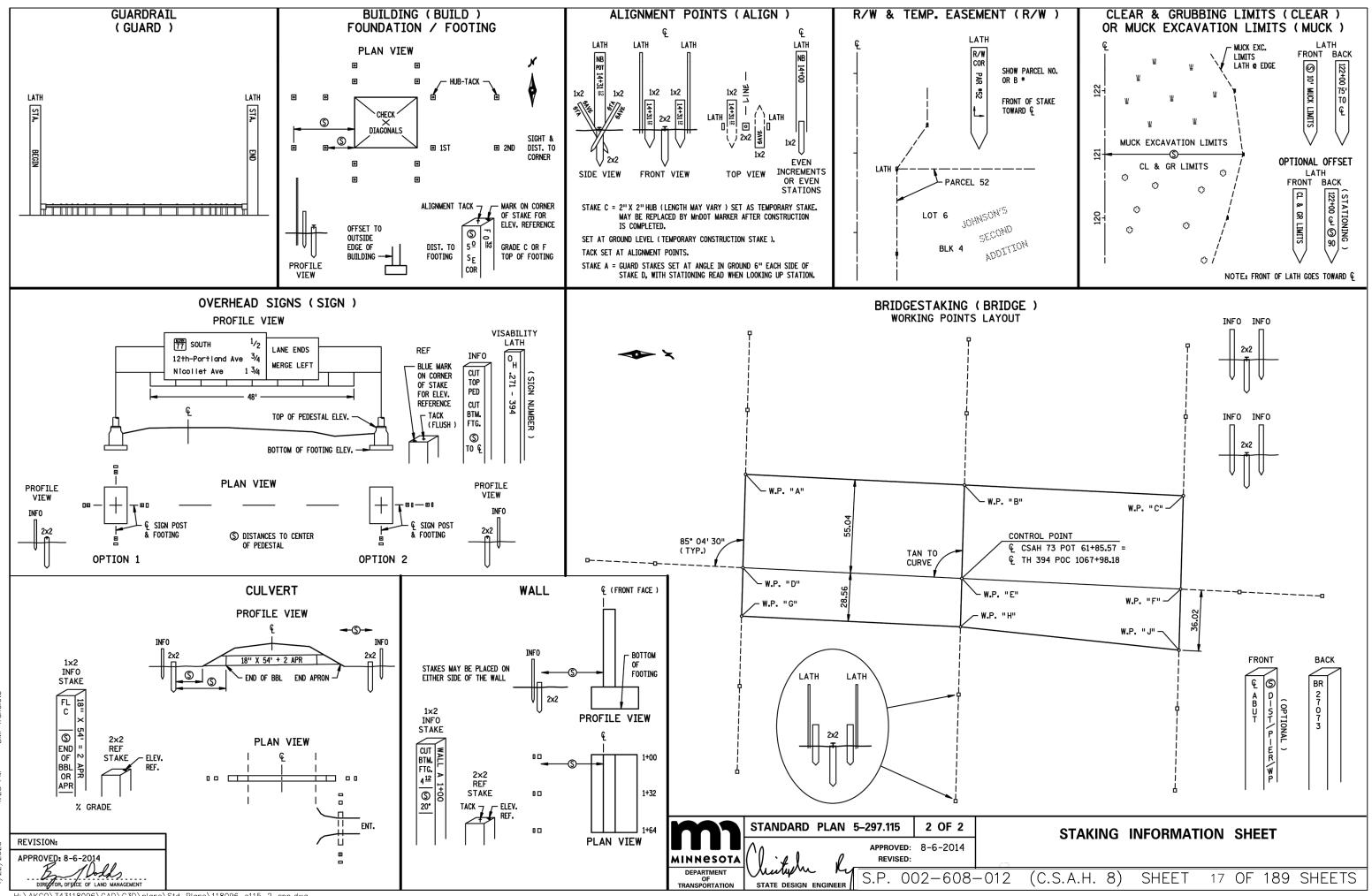
.pc3


2020 taylo 6/4/


REV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	14
			TYPICAL SECTIONS	 189
			THIORE SECTIONS	109

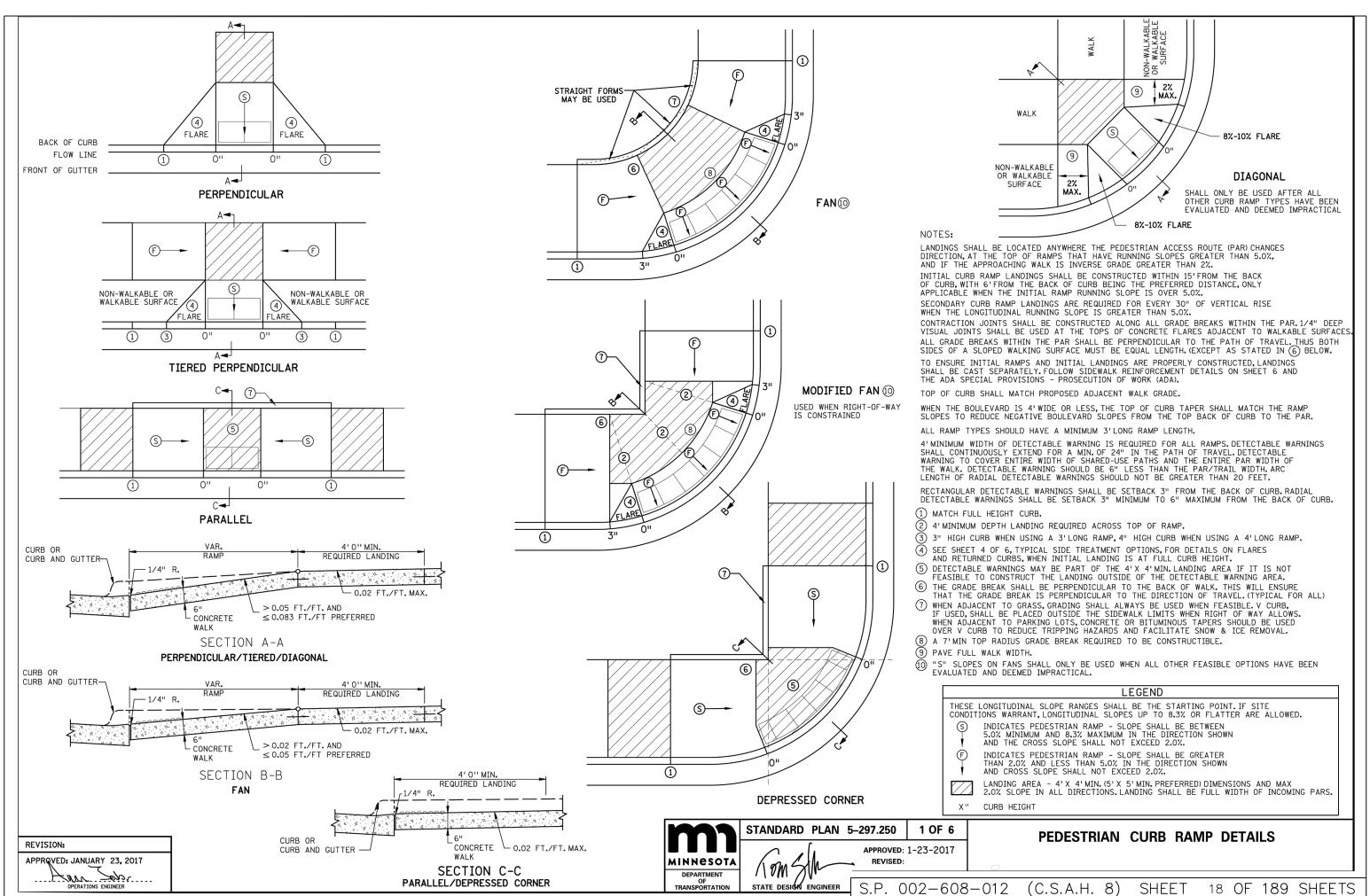
entation).pc3 eral Docum Trans.ctb (Gene BMI PDF AutoCAD F 5:10 PM

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	15 OF
			MISCELLANEOUS DETAILS	0⊧ 189
				100


H: \AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s115_1_spn.dwg

003

PDF


$\begin{array}{c c} (ES) \\ 1 \times 2 & 1 \times 2 & LATH \\ \hline \\ B & \\ B & \\ C & \\ D \\ \end{array}$	C = CUT CAP = CORR. ALUM. PIPE CB = CATCH BASIN	HH = HANE HP = HIP LT = LEFT MH = MANI NB = NOR" PAR = PAI Z = PERCI P.E. = PER RAD = RAI RCP = REI RT = RIGH RT = RIGH RZW = RII SB = SOU SCP = SEC SH = SHOL TC = TOP OR T.E. = TEM 3 :1 = SLI WB = WES WP = WOR	POINT HOLE THBOUND ET RCEL ENT GRADE M. EASEMENT DIUS POINT INF. CONC. PIPE ERENCE POINT INF. SECT. CONC. IT CHEOUND CT. CONC. PIPE JLDER CASTING TOP CURB IP. EASEMENT OPE (EXAMPLE) TBOUND KING POINTS FEET)
ALS GR MUCK R/W TEMP. S 100 ALL ALL RS 100 ALL ALL RS 100 ALL CORNERS RS 100 ALL ALL RS 100 ALL ALL RS 100 ALL CORNERS I I I IIII I I IIII IIII I I IIII IIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		± 1.5 2.0 2.0 0.2 0.05 0.07 0.05 0.07 0.10 0.02 0.5 0.04 0.05 2.0 0.10 1.0	VERTICAL ± 0.2 0.03 0.05 0.03 0.05 0.02 0.05 0.5 0JECT DATUM
PTION B	DISCLA THESE STAKING INFORM FOR INFORMATION PURE STAKING PROCEDURES SUBJECT TO CHANGE D BY CIRCUMSTANCES AN BETWEEN SURVEY CREW	MATION SH POSES ON VARY AND URING CO D/OR AGR	LY. MAY BE NSTRUCTION REEMENTS
STAKI	NG INFORMATION	SHEET	
<u> </u>			

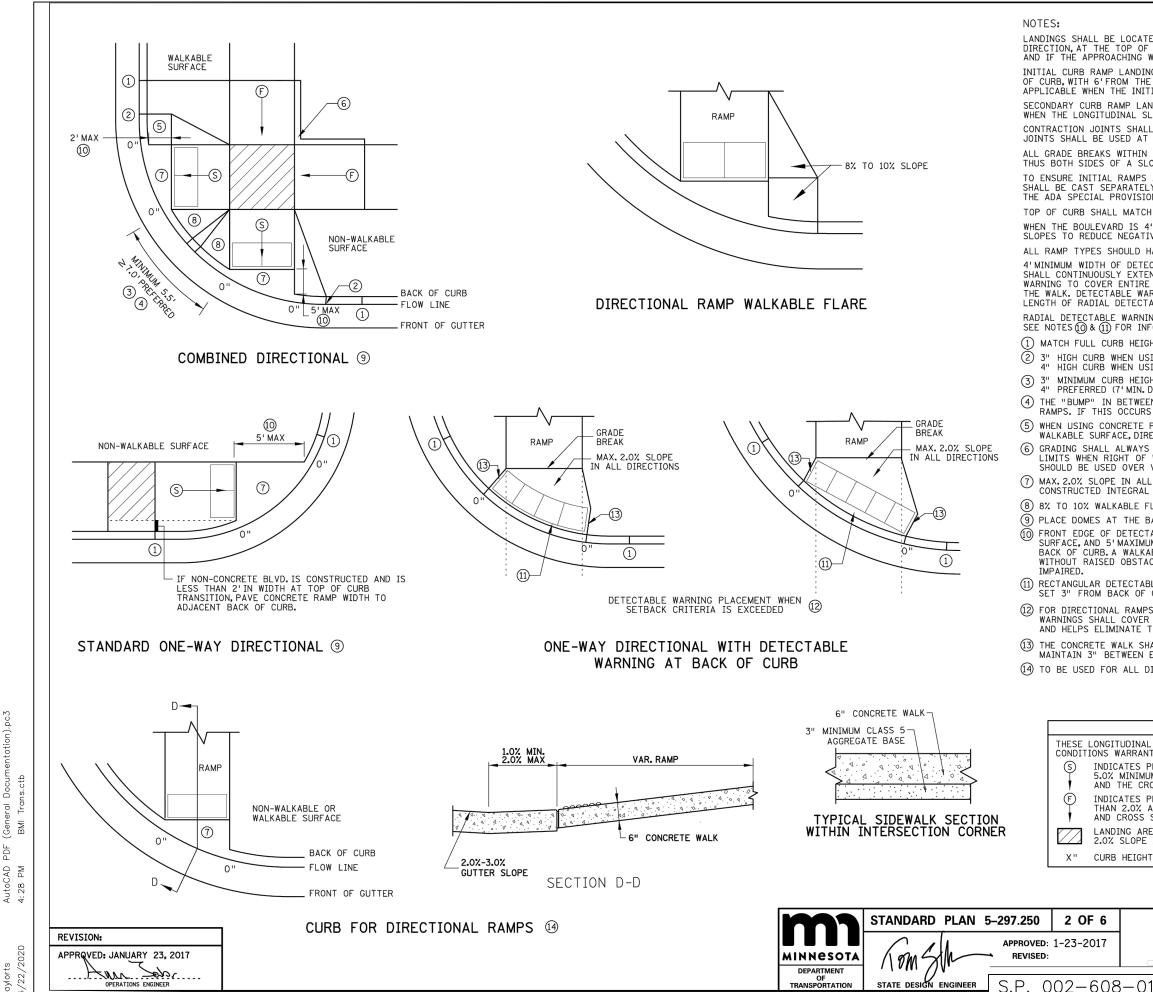
SHEET (C.S.A.H. 8) 16 OF 189 SHEETS

ation).pc3 ctb Doc Trai (Gene BMI PDF AutoCAD 1 4:28 PM

H:\AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s115_2_spn.dwg

H:\AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s250_1_spn.dwg

taylor' 4/22/


(Gen BMI

CAD PM

28

⊐ ...

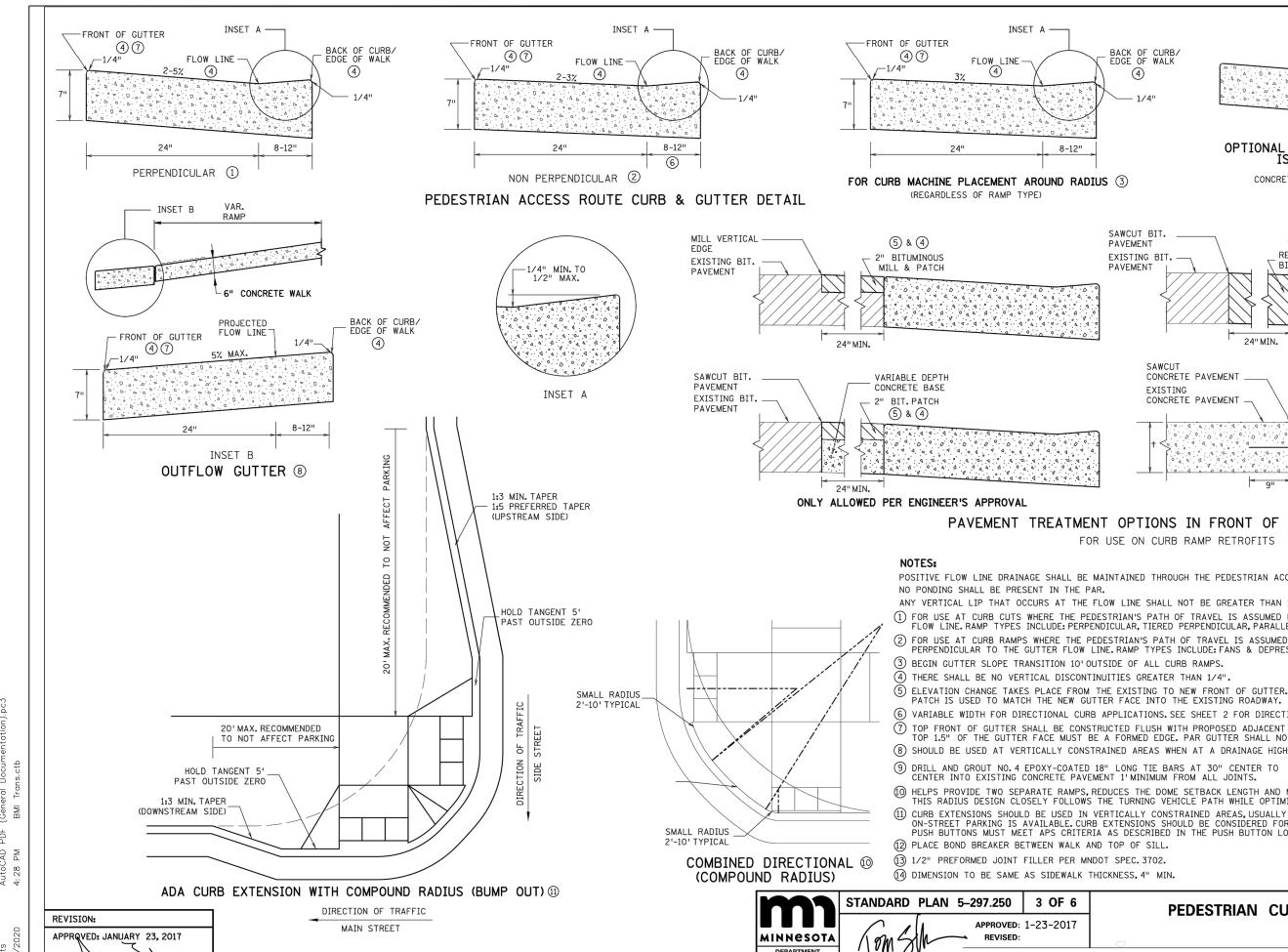
(C.S.A.H. 8) SHEET

H:\AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s250_2_spn.dwg

4" HIGH CURB WHEN USING A 4'LONG RAMP. RAMPS. IF THIS OCCURS MODIFY THE RAMP LOCATION OR SWITCH RAMP TO A FAN/DEPRESSED CORNER. LIMITS WHEN RIGHT OF WAY ALLOWS. WHEN ADJACENT TO PARKING LOTS, CONCRETE OR BITUMINOUS TAPERS SHOULD BE USED OVER V CURB TO REDUCE TRIPPING HAZARDS AND FACILITATE SNOW & ICE REMOVAL. CONSTRUCTED INTEGRAL WITH CURB AND GUTTER. SURFACE, AND 5' MAXIMUM WHEN ADJACENT TO NON-WALKABLE SURFACE WITH ONE CORNER SET 3" FROM BACK OF CURB. A WALKABLE SURFACE IS DEFINED AS A PAVED SURFACE ADJACENT TO A CURB RAMP WITHOUT RAISED OBSTACLES THAT COULD MISTAKENLY BE TRAVERSED BY A USER WHO IS VISUALLY LEGEND THESE LONGITUDINAL SLOPE RANGES SHALL BE THE STARTING POINT. IF SITE CONDITIONS WARRANT, LONGITUDINAL SLOPES UP TO 8.3% OR FLATTER ARE ALLOWED. INDICATES PEDESTRIAN RAMP - SLOPE SHALL BE BETWEEN 5.0% MINIMUM AND 8.3% MAXIMUM IN THE DIRECTION SHOWN AND THE CROSS SLOPE SHALL NOT EXCEED 2.0%.

AND IF THE APPROACHING WALK IS INVERSE GRADE. THE WALK. DETECTABLE WARNING SHOULD BE 6" LESS THAN THE PAR/PATH WIDTH. ARC

LANDINGS SHALL BE LOCATED ANYWHERE THE PEDESTRIAN ACCESS ROUTE (PAR) CHANGES DIRECTION, AT THE TOP OF RAMPS THAT HAVE RUNNING SLOPES GREATER THAN 5.0%, INITIAL CURB RAMP LANDINGS SHALL BE CONSTRUCTED WITHIN 15' FROM THE BACK OF CURB, WITH 6'FROM THE BACK OF CURB BEING THE PREFERRED DISTANCE, ONLY APPLICABLE WHEN THE INITIAL RAMP RUNNING SLOPE IS OVER 5.0%. SECONDARY CURB RAMP LANDINGS ARE REQUIRED FOR EVERY 30" OF VERTICAL RISE WHEN THE LONGITUDINAL SLOPE IS GREATER THAN 5.0%. CONTRACTION JOINTS SHALL BE CONSTRUCTED ALONG ALL GRADE BREAKS WITHIN THE PAR. 1/4" DEEP VISUAL JOINTS SHALL BE USED AT THE TOP GRADE BREAK OF CONCRETE FLARES ADJACENT TO WALKABLE SURFACES. ALL GRADE BREAKS WITHIN THE PAR SHALL BE PERPENDICULAR TO THE PATH OF TRAVEL. THUS BOTH SIDES OF A SLOPED WALKING SURFACE MUST BE EQUAL LENGTH. TO ENSURE INITIAL RAMPS AND INITIAL LANDINGS ARE PROPERLY CONSTRUCTED, LANDINGS SHALL BE CAST SEPARATELY. FOLLOW SIDEWALK REINFORCEMENT DETAILS ON SHEET 6 AND THE ADA SPECIAL PROVISION (PROSECUTION OF WORK). TOP OF CURB SHALL MATCH PROPOSED ADJACENT WALK GRADE. WHEN THE BOULEVARD IS 4'WIDE OR LESS, THE TOP OF CURB TAPER SHALL MATCH THE RAMP SLOPES TO REDUCE NEGATIVE BOULEVARD SLOPES FROM THE TOP BACK OF CURB TO THE PAR. ALL RAMP TYPES SHOULD HAVE A MINIMUM 3'LONG RAMP LENGTH. 4' MINIMUM WIDTH OF DETECTABLE WARNING IS REQUIRED FOR ALL RAMPS. DETECTABLE WARNINGS SHALL CONTINUOUSLY EXTEND FOR A MIN. OF 24" IN THE PATH OF TRAVEL. DETECTABLE WARNING TO COVER ENTIRE WIDTH OF SHARED-USE PATH AND THE ENTIRE PAR WIDTH OF LENGTH OF RADIAL DETECTABLE WARNINGS SHOULD NOT BE GREATER THAN 20 FEET. RADIAL DETECTABLE WARNINGS SHALL BE SETBACK 3" MINIMUM TO 6" MAXIMUM FROM THE BACK OF CURB. SEE NOTES () & (1) FOR INFORMATION REGARDING RECTANGULAR DETECTABLE WARNING PLACEMENT. (1) MATCH FULL CURB HEIGHT. 2 3" HIGH CURB WHEN USING A 3'LONG RAMP (8) 8% TO 10% WALKABLE FLARE. (9) PLACE DOMES AT THE BACK OF CURB WHEN ALLOWABLE SETBACK CRITERIA IS EXCEEDED. () FRONT EDGE OF DETECTABLE WARNING SHALL BE SET BACK 2' MAXIMUM WHEN ADJACENT TO WALKABLE

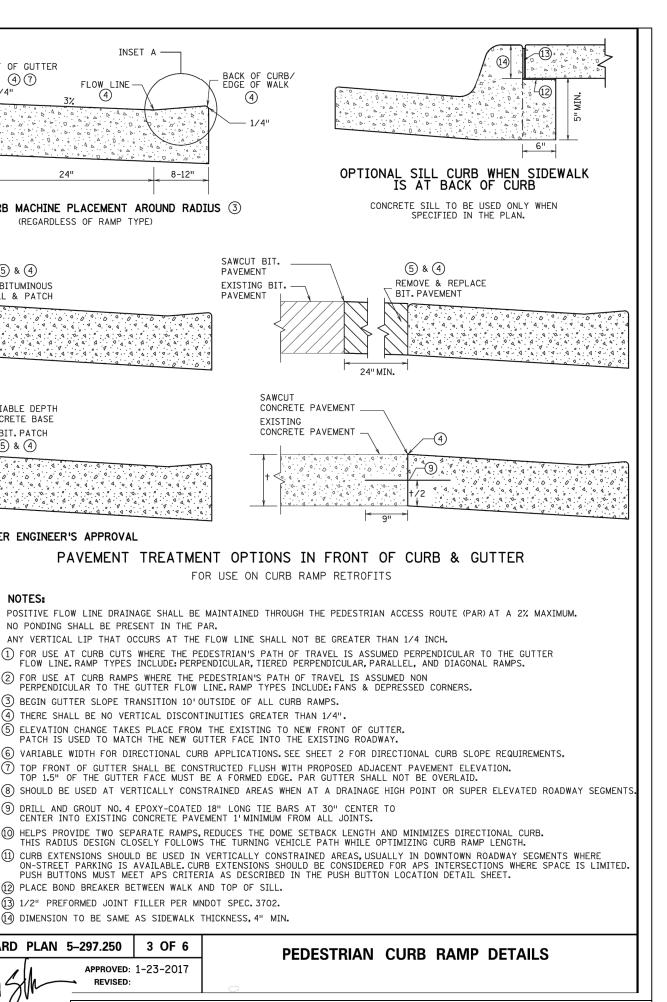

3 3" MINIMUM CURB HEIGHT (5.5' MIN. DISTANCE REQUIRED BETWEEN DOMES) 4" PREFERRED (7' MIN. DISTANCE REQUIRED BETWEEN DOMES). (4) THE "BUMP" IN BETWEEN THE RAMPS SHOULD NOT BE IN THE PATH OF TRAVEL FOR COMBINED DIRECTIONAL (5) WHEN USING CONCRETE PAVED FLARES ON THE OUTSIDE OF DIRECTIONAL RAMPS, AND ADJACENT TO A WALKABLE SURFACE, DIRECTIONAL RAMP FLARES SHOULD BE USED. SEE THE DETAIL ON THIS SHEET. (6) GRADING SHALL ALWAYS BE USED WHEN FEASIBLE. V CURB, IF USED, SHALL BE PLACED OUTSIDE THE SIDEWALK (7) MAX. 2.0% SLOPE IN ALL DIRECTIONS IN FRONT OF GRADE BREAK AND DRAIN TO FLOW LINE. SHALL BE (1) RECTANGULAR DETECTABLE WARNINGS MAY BE SETBACK UP TO 9" FROM THE BACK OF CURB WITH CORNERS SET 3" FROM BACK OF CURB. IF 9" SETBACK IS EXCEEDED USE RADIAL DETECTABLE WARNINGS. (2) FOR DIRECTIONAL RAMPS WITH THE DETECTABLE WARNINGS PLACED AT THE BACK OF CURB, THE DETECTABLE WARNINGS SHALL COVER THE ENTIRE WIDTH OF THE WALK/PATH. THIS ENSURES A DETECTABLE EDGE AND HELPS ELIMINATE THE CURB TAPER OBSTRUCTING THE PATH OF PEDESTRIAN TRAVEL. (13) THE CONCRETE WALK SHALL BE FORMED AND CONSTRUCTED PERPENDICULAR TO THE BACK OF CURB. MAINTAIN 3" BETWEEN EDGE OF DOMES AND EDGE OF CONCRETE. (1) TO BE USED FOR ALL DIRECTIONAL RAMPS, EXCEPT WHERE DOMES ARE PLACED ALONG THE BACK OF CURB.

INDICATES PEDESTRIAN RAMP - SLOPE SHALL BE GREATER THAN 2.0% AND LESS THAN 5.0% IN THE DIRECTION SHOWN AND CROSS SLOPE SHALL NOT EXCEED 2.0%. LANDING AREA - 4'X 4'MIN. (5'X 5'MIN. PREFERRED) DIMENSIONS AND MAX 2.0% SLOPE IN ALL DIRECTIONS. LANDING SHALL BE FULL WIDTH OF INCOMING PARS.

S.P. 002-608-012

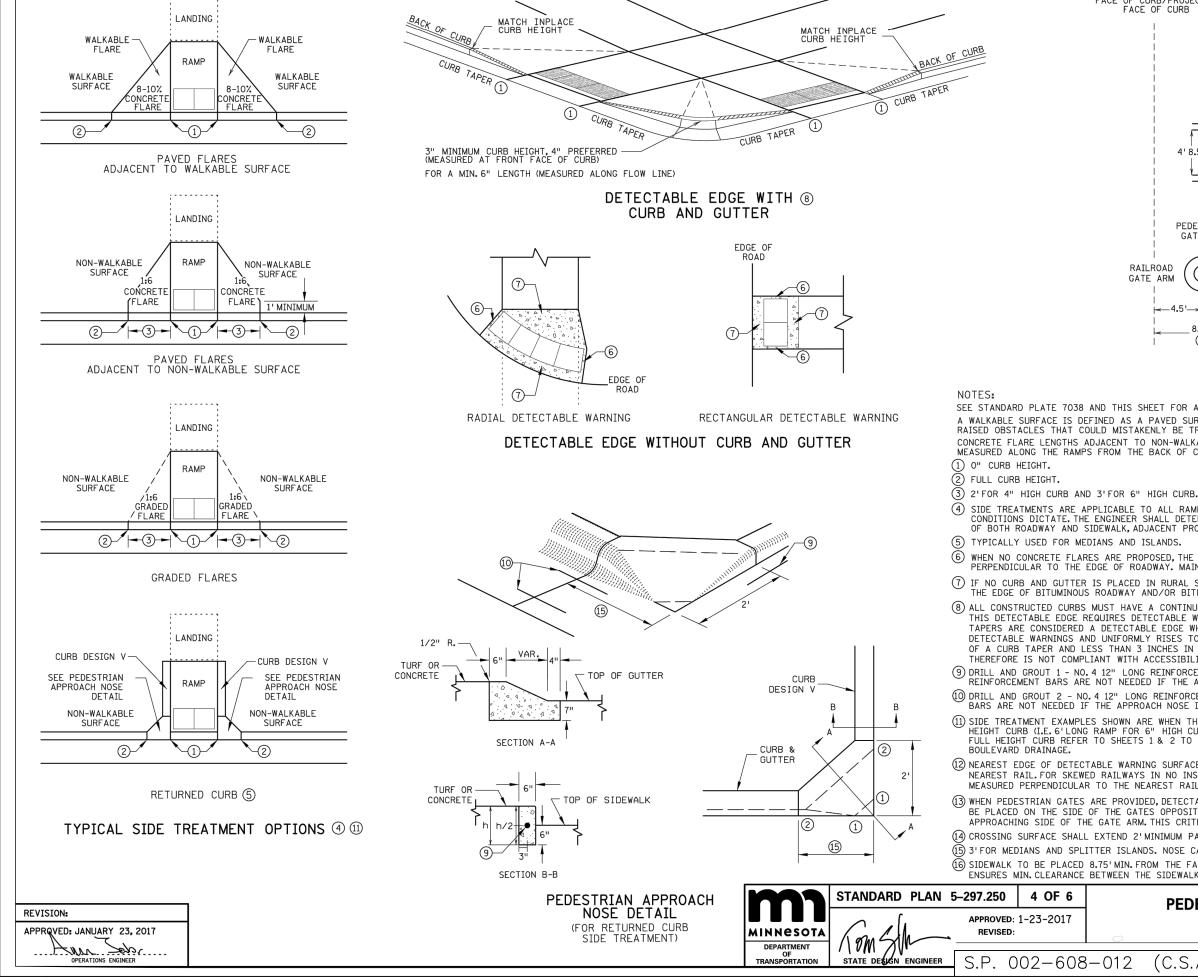
PEDESTRIAN CURB RAMP DETAILS

SHEET (C.S.A.H. 8) 19 OF 189 SHEETS


DEPARTMENT

OF TRANSPORTATION

STATE DESIGN ENGINEER


OPERATIONS ENGINEER

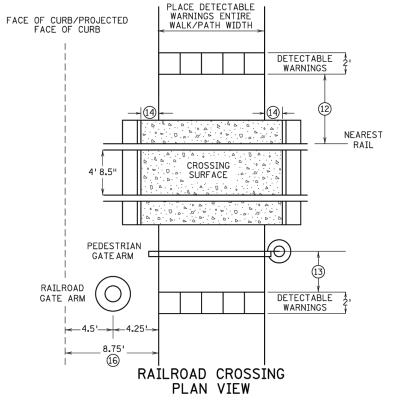
-ylor /22/

S.P. 002-608-012 (C.S.A.H. 8) SHEET 20 OF 189 SHEETS

H:\AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s250_3_spn.dwg

ctb

Ě


BMI

CAD

A 4

110(28

190r 122

SEE STANDARD PLATE 7038 AND THIS SHEET FOR ADDITIONAL DETAILS ON DETECTABLE WARNING. A WALKABLE SURFACE IS DEFINED AS A PAVED SURFACE ADJACENT TO A CURB RAMP WITHOUT RAISED OBSTACLES THAT COULD MISTAKENLY BE TRAVERSED BY A USER WHO IS VISUALLY IMPAIRED. CONCRETE FLARE LENGTHS ADJACENT TO NON-WALKABLE SURFACES SHOULD BE LESS THAN 8'LONG MEASURED ALONG THE RAMPS FROM THE BACK OF CURB.

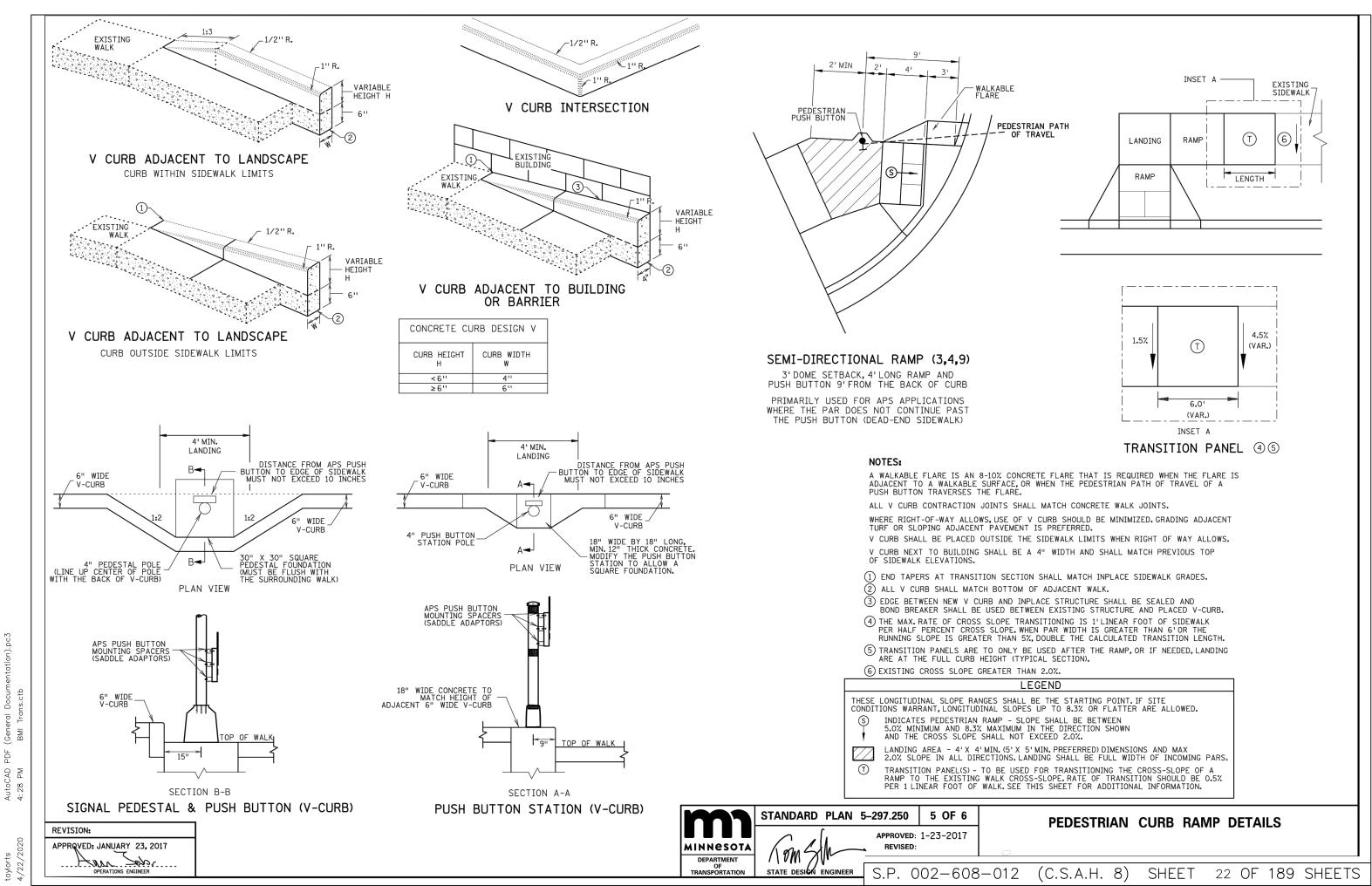
(4) SIDE TREATMENTS ARE APPLICABLE TO ALL RAMP TYPES AND SHOULD BE IMPLEMENTED AS NEEDED AS FIELD CONDITIONS DICTATE. THE ENGINEER SHALL DETERMINE THE RAMP SIDE TREATMENTS BASED ON MAINTENANCE OF BOTH ROADWAY AND SIDEWALK, ADJACENT PROPERTY CONSIDERATIONS, AND MITIGATING CONSTRUCTION IMPACTS.

6 WHEN NO CONCRETE FLARES ARE PROPOSED, THE CONCRETE WALK SHALL BE FORMED AND CONSTRUCTED PERPENDICULAR TO THE EDGE OF ROADWAY. MAINTAIN 3" MAX.BETWEEN EDGE OF DOMES AND EDGE OF CONCRETE. (7) IF NO CURB AND GUTTER IS PLACED IN RURAL SECTIONS, DETECTABLE WARNINGS SHALL BE PLACED 1' FROM THE EDGE OF BITUMINOUS ROADWAY AND/OR BITUMINOUS SHARED-USE PATH TO PROVIDE VISUAL CONTRAST.

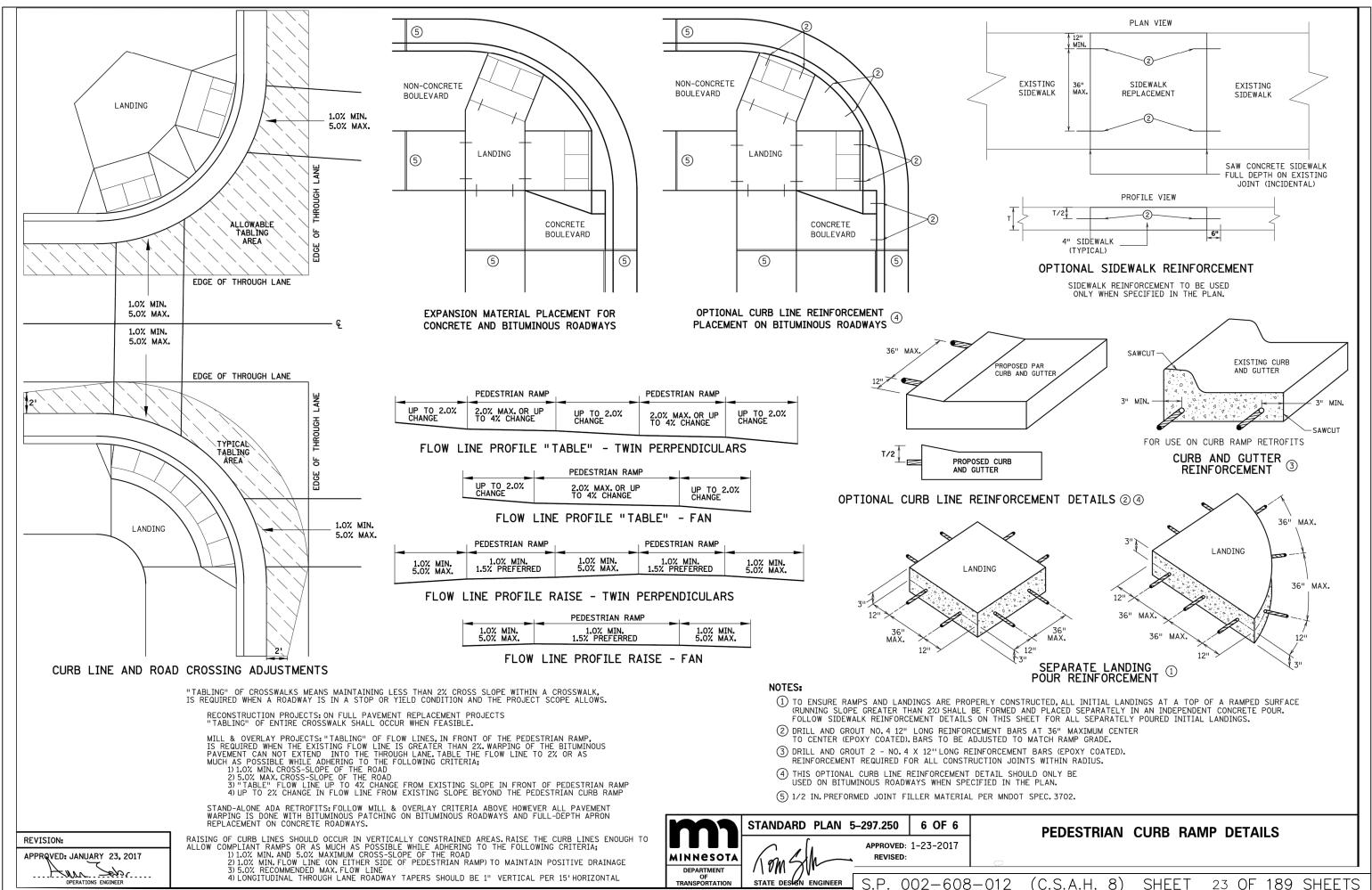
(8) ALL CONSTRUCTED CURBS MUST HAVE A CONTINUOUS DETECTABLE EDGE FOR THE VISUALLY IMPAIRED. THIS DETECTABLE EDGE REQUIRES DETECTABLE WARNINGS WHEREVER THERE IS ZERO-INCH HIGH CURB.CURB TAPERS ARE CONSIDERED A DETECTABLE EDGE WHEN THE TAPER STARTS WITHIN 3" OF THE EDGE OF THE DETECTABLE WARNINGS AND UNIFORMLY RISES TO A 3-INCH MINIMUM CURB HEIGHT. ANY CURB NOT PART OF A CURB TAPER AND LESS THAN 3 INCHES IN HEIGHT IS NOT CONSIDERED A DETECTABLE EDGE AND THEREFORE IS NOT COMPLIANT WITH ACCESSIBILITY STANDARDS.

(9) DRILL AND GROUT 1 - NO. 4 12" LONG REINFORCEMENT BAR (EPOXY COATED) WITH 3" MIN. COVER. REINFORCEMENT BARS ARE NOT NEEDED IF THE APPROACH NOSE IS POURED INTEGRAL WITH THE V CURB. (1) DRILL AND GROUT 2 - NO. 4 12" LONG REINFORCEMENT BARS (EPOXY COATED) WITH 3" MIN. COVER. REINFORCEMENT

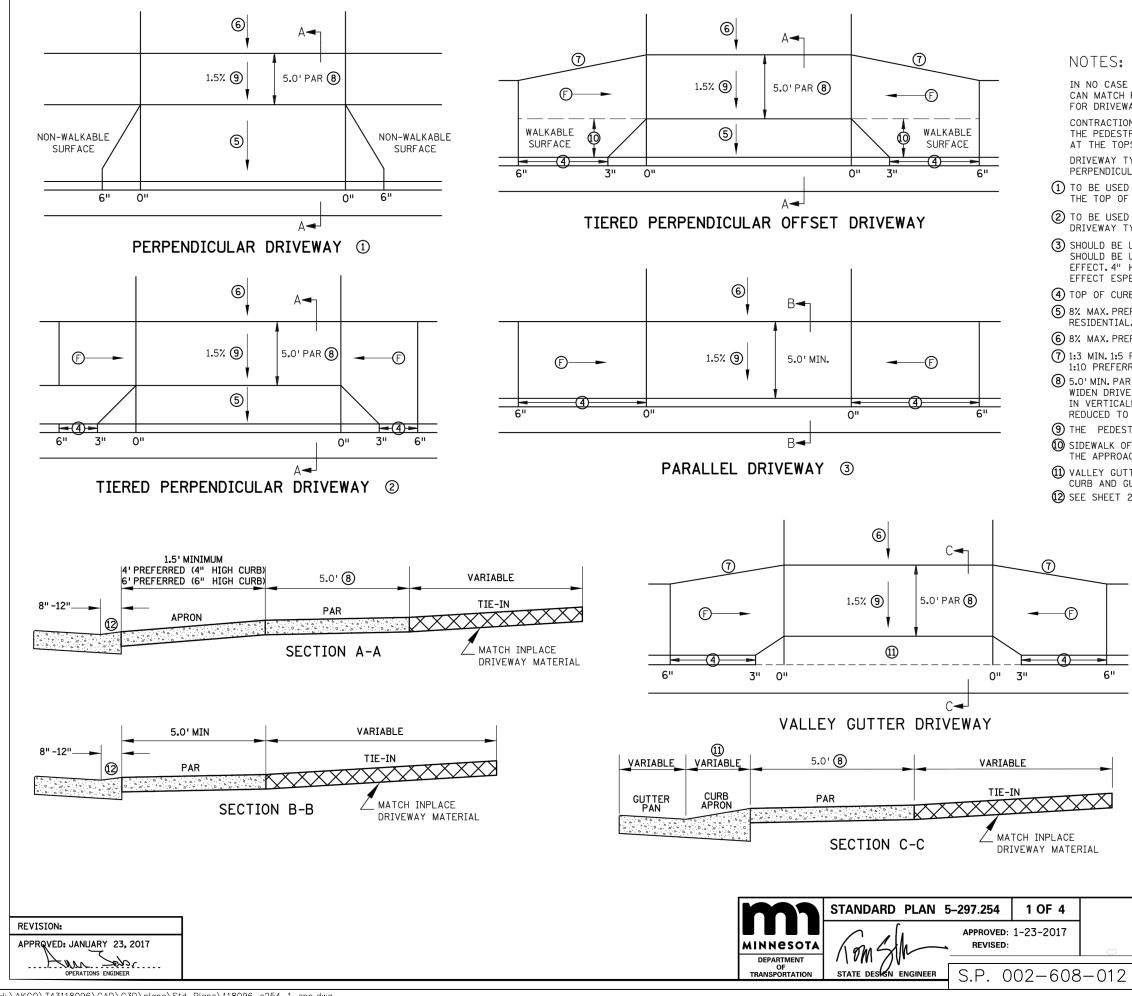
BARS ARE NOT NEEDED IF THE APPROACH NOSE IS POURED INTEGRAL WITH THE CURB AND GUTTER. (1) SIDE TREATMENT EXAMPLES SHOWN ARE WHEN THE INITIAL LANDING IS APPROXIMATELY LEVEL WITH THE FULL HEIGHT CURB (I.E. 6'LONG RAMP FOR 6" HIGH CURB). WHEN THE INITIAL LANDING IS MORE THAN 1" BELOW FULL HEIGHT CURB REFER TO SHEETS 1 & 2 TO MODIFY THE CURB HEIGHT TAPERS AND MAINTAIN POSITIVE


0 nearest edge of detectable warning surfaces shall be placed 12'minimum to 15'maximum from the NEAREST RAIL.FOR SKEWED RAILWAYS IN NO INSTANCE SHALL THE DETECTABLE WARNING BE CLOSER THAN 12' MEASURED PERPENDICULAR TO THE NEAREST RAIL

(13) WHEN PEDESTRIAN GATES ARE PROVIDED, DETECTABLE WARNING SURFACES SHALL BE PLACED ON THE SIDE OF THE GATES OPPOSITE THE RAIL, 2' FROM THE APPROACHING SIDE OF THE GATE ARM. THIS CRITERIA GOVERNS OVER NOTE (12). (14) CROSSING SURFACE SHALL EXTEND 2'MINIMUM PAST THE OUTSIDE EDGE OF WALK OR SHARED-USE PATH.


(15) 3' FOR MEDIANS AND SPLITTER ISLANDS. NOSE CAN BE REDUCED TO 2'ON FREE RIGHT ISLANDS. (6) SIDEWALK TO BE PLACED 8.75' MIN. FROM THE FACE OF CURB/PROJECTED FACE OF CURB. THIS ENSURES MIN. CLEARANCE BETWEEN THE SIDEWALK AND GATE ARM COUNTERWEIGHT SUPPORTS.

PEDESTRIAN CURB RAMP DETAILS


(C.S.A.H. 8) SHEET 21 OF 189 SHEETS

H: \AKC0\T43118096\CAD\C3D\plans\Std_Plans\118096_s250_5_spn.dwg

aylor1 1/22/

/22/

ion).pc3

ctb

Tral

(Gene BMI

PDF

IN NO CASE SHALL SIDEWALK PROFILES EXCEED 5.0%, EXCEPT SIDEWALK PROFILES CAN MATCH ROADWAY GRADE IF ROADWAY GRADE IS GREATER THAN 5.0%. RAMPS FOR DRIVEWAYS ARE REQUIRED TO FOLLOW THE ABOVE SIDEWALK CRITERIA.

CONTRACTION JOINTS SHALL BE CONSTRUCTED ALONG ALL GRADE BREAKS WITHIN THE PEDESTRIAN ACCESS ROUTE (PAR). $1/4^{\prime\prime}$ DEEP VISUAL JOINTS SHALL BE USED AT THE TOPS OF CONCRETE FLARES ADJACENT TO WALKABLE SURFACES.

DRIVEWAY TYPES FROM MOST PREFERRED TO LEAST PREFERRED ARE AS FOLLOWS: PERPENDICULAR, TIERED PERPENDICULAR, TIERED PERPENDICULAR OFFSET & PARALLEL. (1) TO BE USED WHEN THE DRIVEWAY PAR IS LEVEL WITH OR ABOVE THE TOP OF CURB, RESULTING IN A CONTINUOUS PAR PROFILE.

(2) TO BE USED WHEN THE DRIVEWAY PAR IS BELOW THE ROADWAY CURB HEIGHT. THIS DRIVEWAY TYPE CAN BE USED FOR BOTH PAVED (AS SHOWN) AND GRASS BOULEVARDS.

(3) SHOULD BE USED FOR NEGATIVE SLOPED DRIVEWAYS. DW CURB TYPE 2 CURB SHOULD BE USED TO RAISE PAR ABOVE GUTTER AND REDUCE "ROLLER COASTER" EFFECT. 4" HIGH ROADWAY CURB SHOULD BE USED TO REDUCE "ROLLER COASTER" EFFECT ESPECIALLY WHEN MULTIPLE DRIVEWAYS ARE PRESENT.

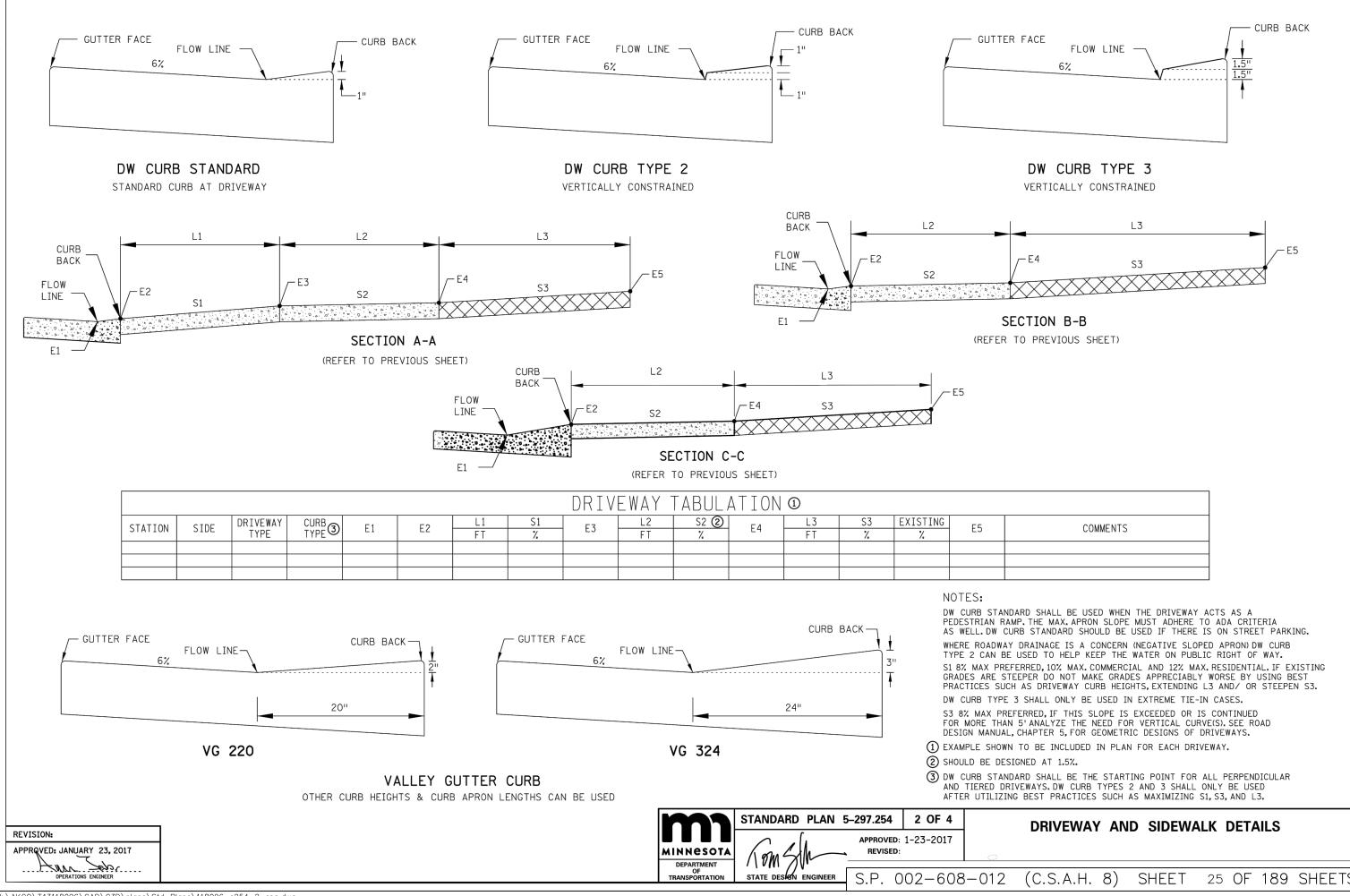
(4) TOP OF CURB SHALL MATCH PROPOSED ADJACENT WALK GRADE.

(5) 8% MAX. PREFERRED, 10% MAX. FOR COMMERCIAL AND 12% MAX. FOR RESIDENTIAL. SEE GENERAL NOTES ON SHEET 2 FOR MORE INFORMATION.

(6) 8% MAX. PREFERRED, SEE SHEET 2 FOR MORE INFORMATION.

1:3 MIN. 1:5 PREFERRED FOR DRIVEWAY RETROFIT PROJECTS. 1:10 PREFERRED FOR SIDEWALK REPLACEMENT PROJECTS.

 (3) 5.0' MIN. PAR WIDTH IS THE STANDARD THROUGH DRIVEWAYS. IF FEASIBLE WIDEN DRIVEWAY PAR WIDTH TO MATCH APPROACHING SIDEWALK PAR WIDTHS. IN VERTICALLY CONSTRAINED AREAS PAR WIDTHS CAN INCREMENTALLY BE REDUCED TO 4.5' OR 4' MIN AFTER ALL OTHER OPTIONS HAVE BEEN APPLIED.
 (3) THE PEDESTRIAN ACCESS ROUTE, MAY NOT EXCEED 0.02 FT./FT. AS CONSTRUCTED.
 (4) SIDEWALK OFFSET TO BE LESS THAN OR EQUAL TO HALF THE APPROACHING SIDEWALK WIDTH.


 VALLEY GUTTER APRON TO BE POURED INTEGRAL WITH THE CURB AND GUTTER.SEE SHEET 2 FOR MORE INFORMATION.
 SEE SHEET 2 FOR CURB TYPE INFORMATION.

LEGEND

INDICATES DRIVEWAY RAMP - SLOPE SHALL
 BE GREATER THAN 2.0% AND LESS THAN 5.0%
 IN THE DIRECTION SHOWN AND CROSS SLOPE
 SHALL NOT EXCEED 2.0%
 X" CURB HEIGHT (INCHES)

DRIVEWAY AND SIDEWALK DETAILS

(C.S.A.H. 8) SHEET 24 OF 189 SHEETS

H:\AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s254_2_spn.dwg

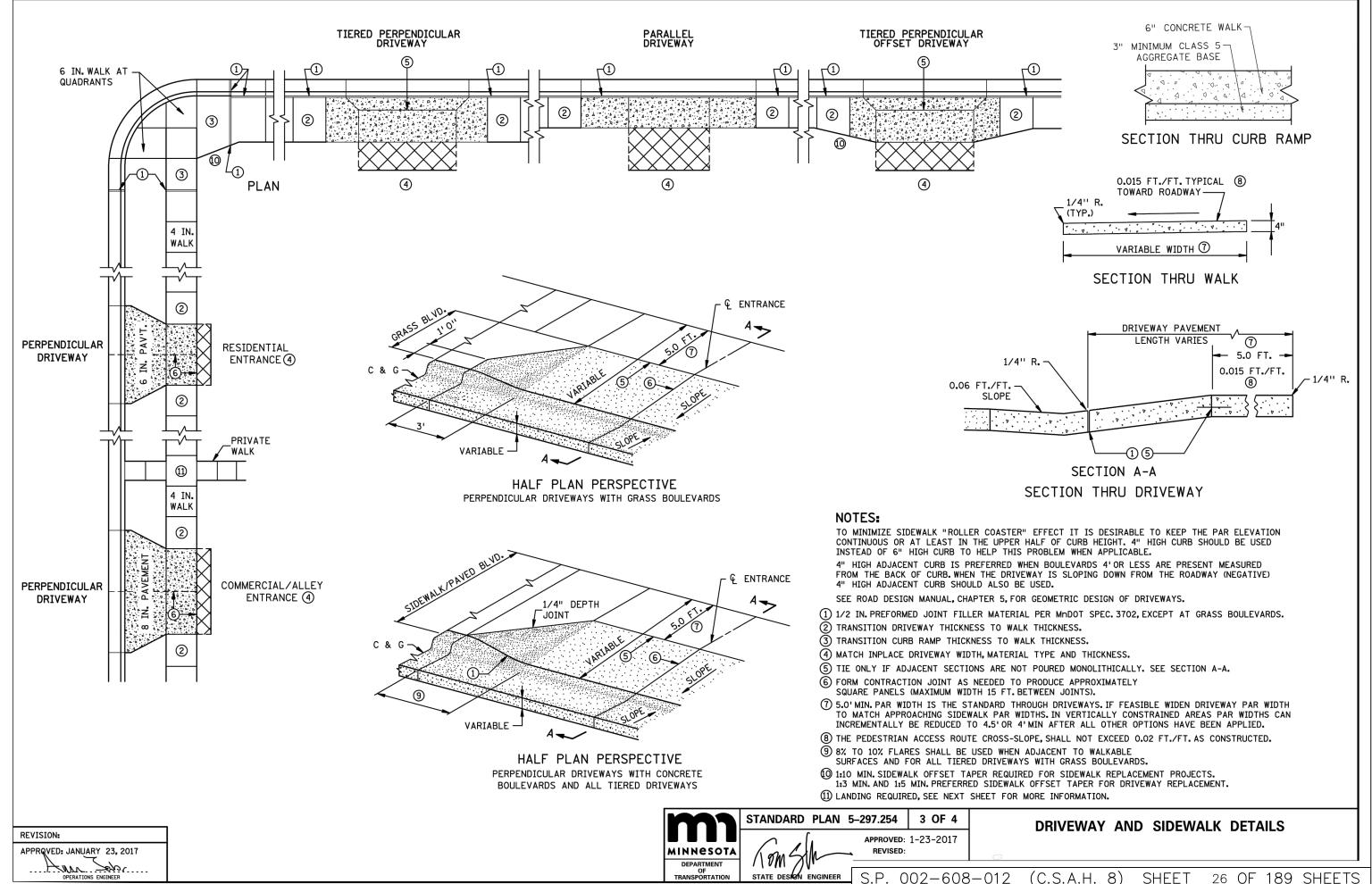
taylort 1/28/.

2020

ation).pc3

ŏ

PDF


CAD

AutoC 5:09

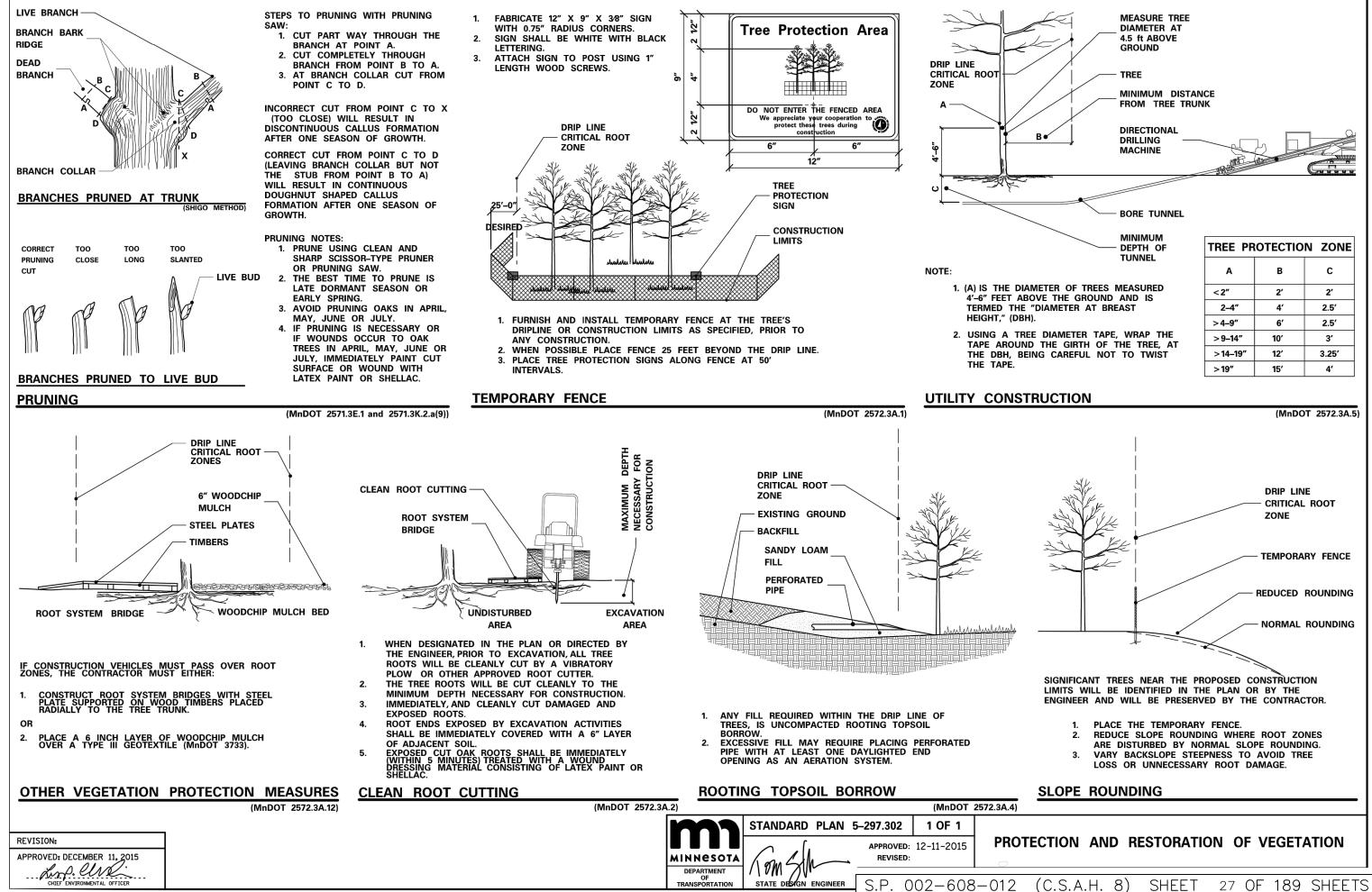
Trai (Gene BMI

ctb

COMMENTS

H: \AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s254_3_spn.dwg

/22/


ctb

(Gene BMI

PM

AutoC 4:29

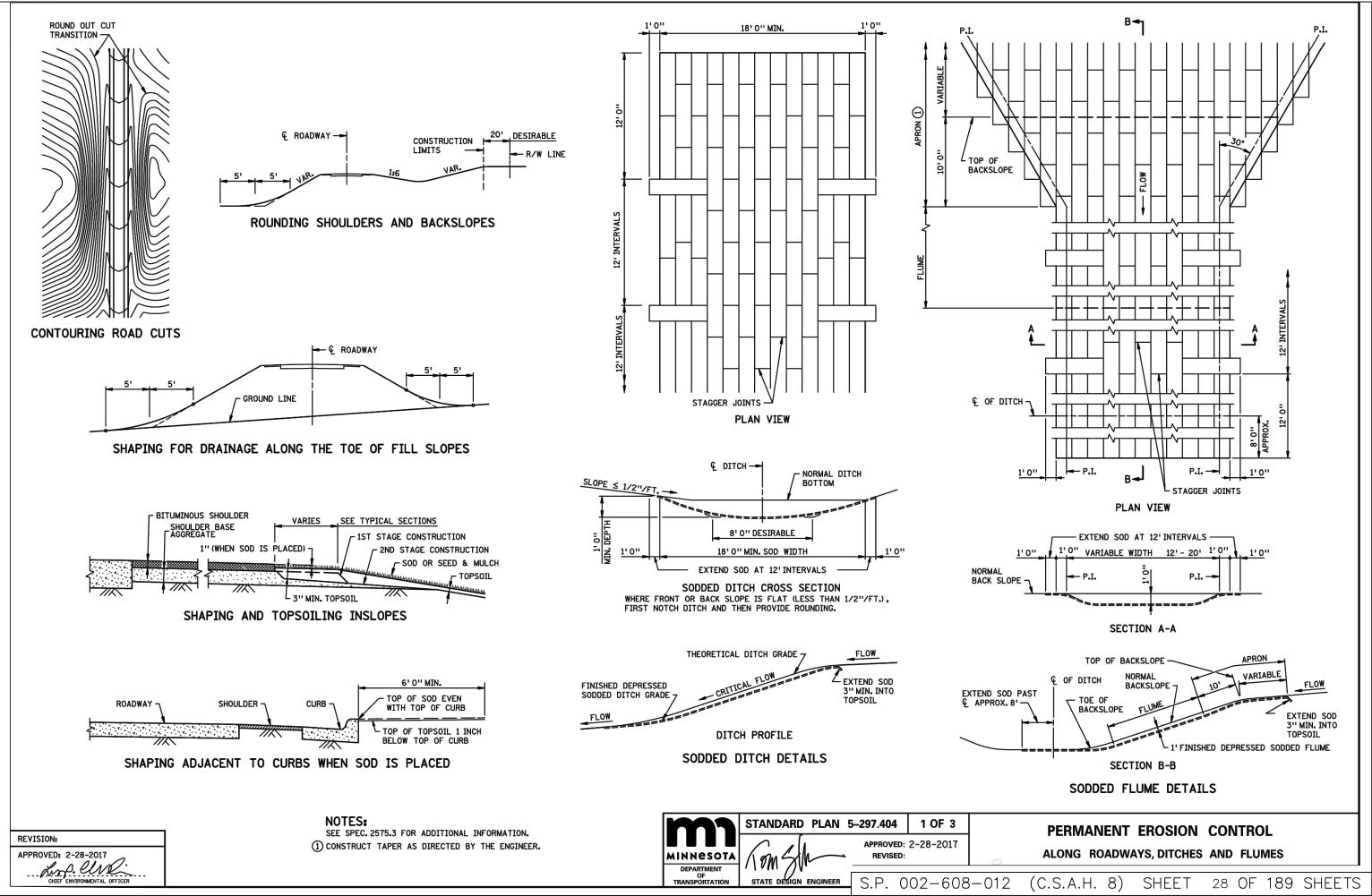
(C.S.A.H. 8) 26 OF 189 SHEETS

H: \AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s302_spn.dwg

Docuri.

eral Trar

(Gene BMI


PDF

PM

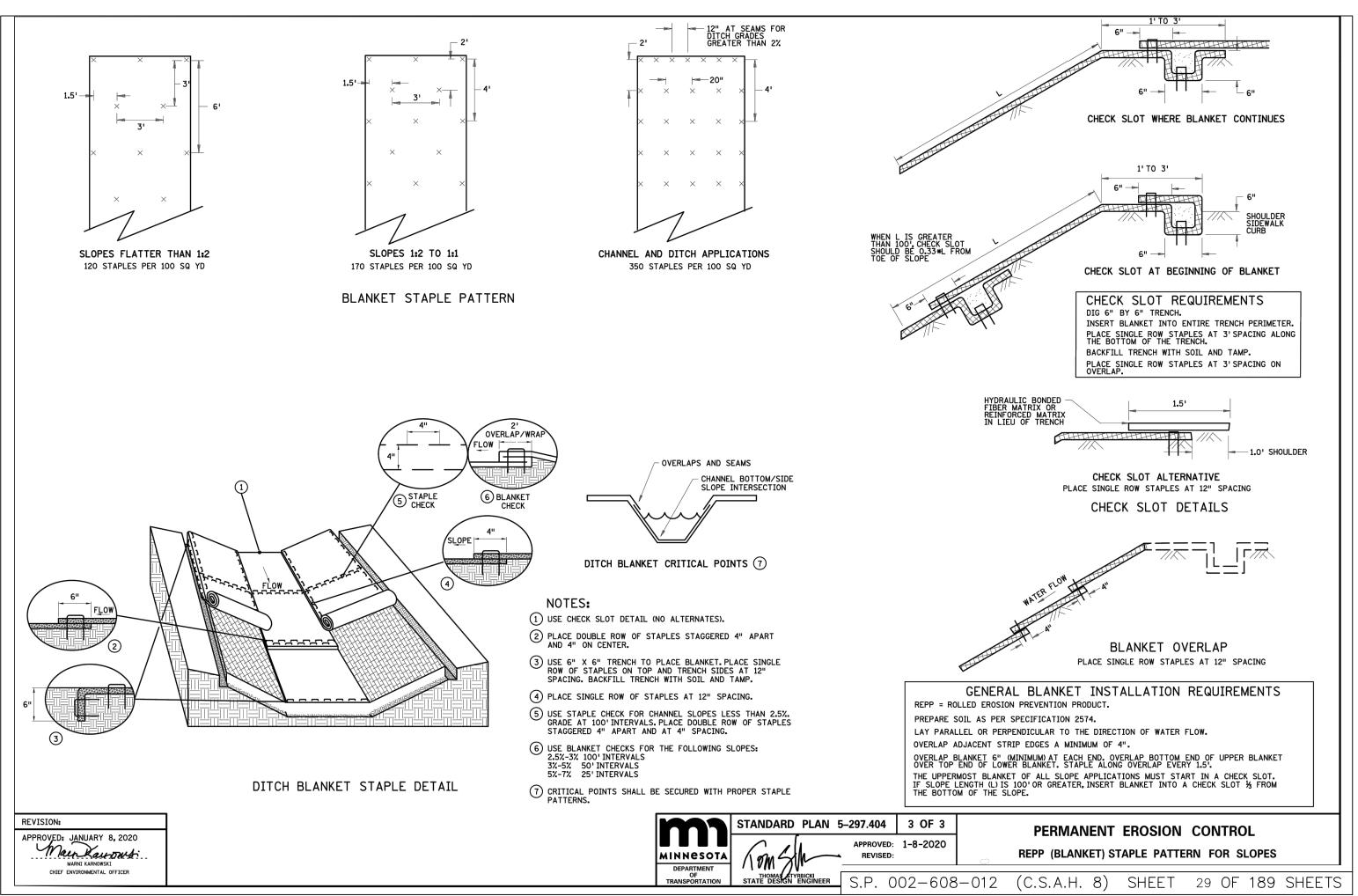
29

taylor' 4/22/

(C.S.A.H. 8) SHEET 27 OF 189 SHEETS

 $\label{eq:head} H: AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s404_1_spn.dwg$

ation).pc3


ctb

L L

(Gene BMI

PDF

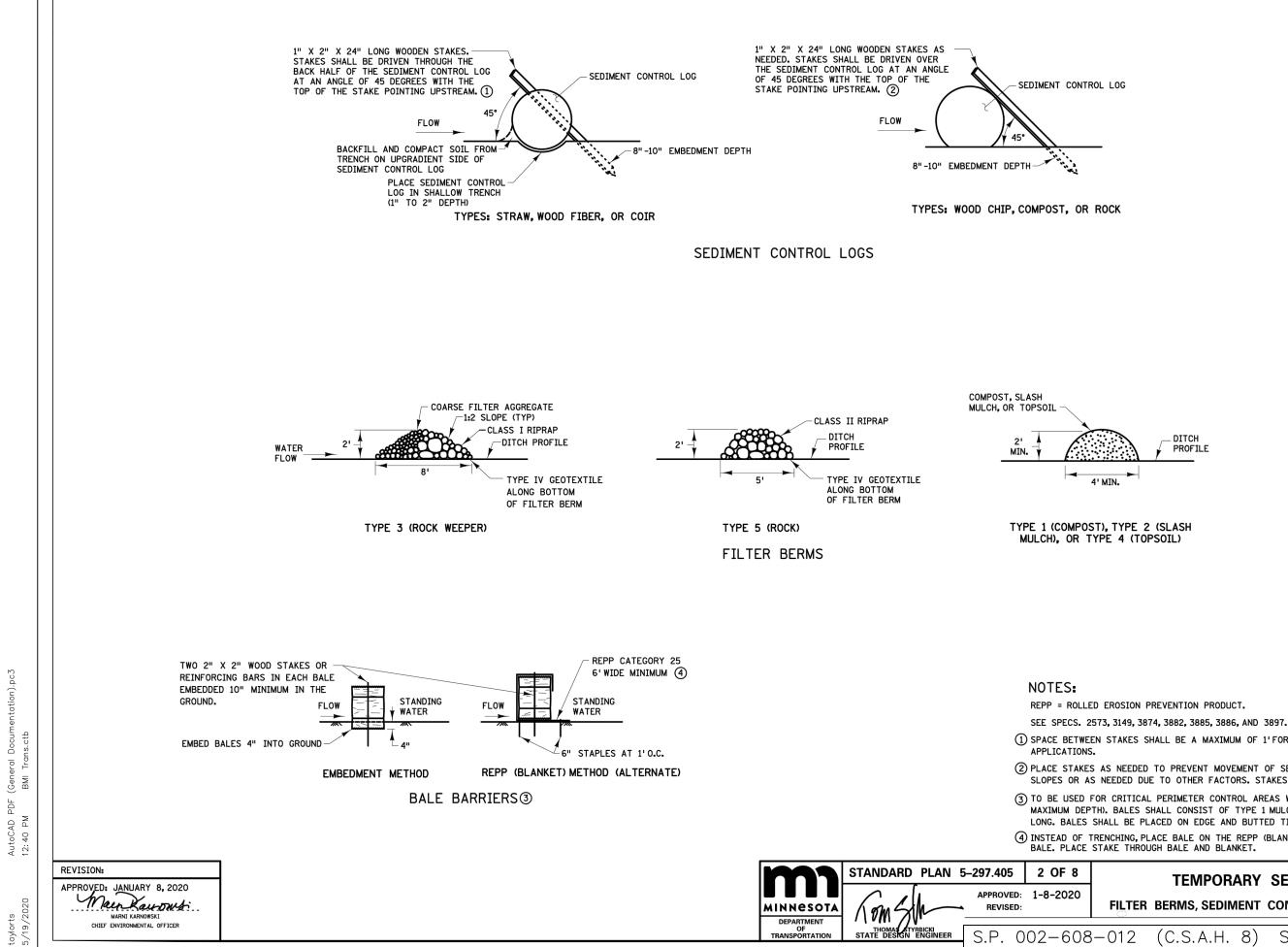
AutoCAD F 12:35 PM

 $\label{eq:head} H: AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s404_3_spn.dwg$

ation).pc3

Doc

Tran


(Gene BMI

toCAD | 37 PM

Aut 12: :

PDF

s.ctb

H: \AKC0\T43118096\CAD\C3D\plans\Std_Plans\118096_s405_2_spn.dwg

pc3

ctb

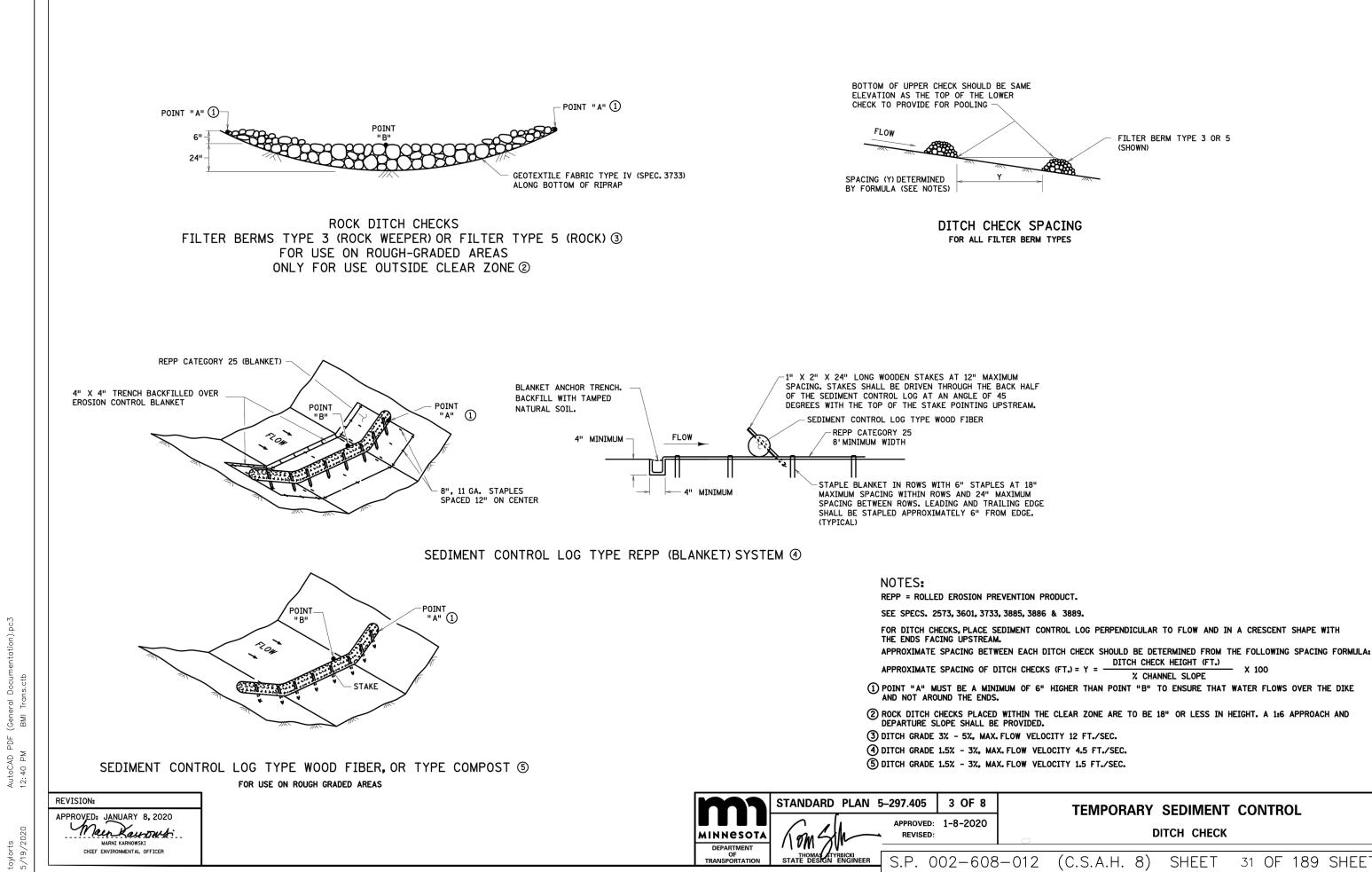
Ě

PDF

SHEET (C.S.A.H. 8) 30 OF 189 SHEETS

TEMPORARY SEDIMENT CONTROL

FILTER BERMS, SEDIMENT CONTROL LOGS, AND BALE BARRIERS


LONG. BALES SHALL BE PLACED ON EDGE AND BUTTED TIGHT TO ADJACENT BALES. (4) INSTEAD OF TRENCHING, PLACE BALE ON THE REPP (BLANKET) AND WRAP BLANKET AROUND THE BALE. PLACE STAKE THROUGH BALE AND BLANKET.

(3) TO BE USED FOR CRITICAL PERIMETER CONTROL AREAS WHERE STANDING WATER OCCURS (6" MAXIMUM DEPTH). BALES SHALL CONSIST OF TYPE 1 MULCH OF APPROXIMATELY 14" X 18" X 36"

(2) PLACE STAKES AS NEEDED TO PREVENT MOVEMENT OF SEDIMENT CONTROL LOGS PLACED ON SLOPES OR AS NEEDED DUE TO OTHER FACTORS. STAKES SHALL BE INCIDENTAL.

(1) SPACE BETWEEN STAKES SHALL BE A MAXIMUM OF 1'FOR DITCH CHECKS OR 2'FOR OTHER

DITCH PROFILE

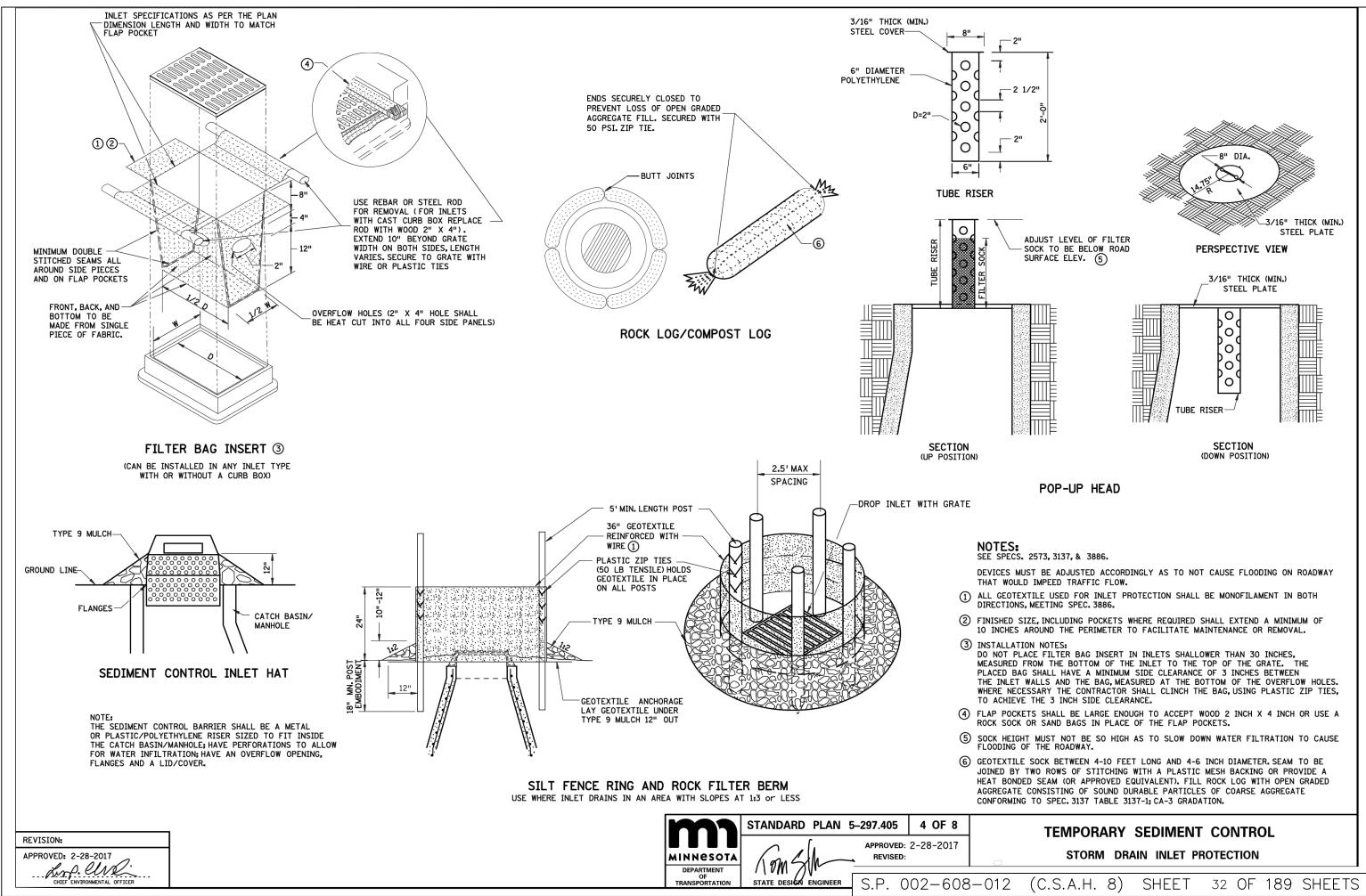
H:\AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s405_3_spn.dwg

ion).pc3

ctb

T_

PDF


(C.S.A.H.	8)	SHEET	31	OF	189	SHEETS
---	----------	----	-------	----	----	-----	--------

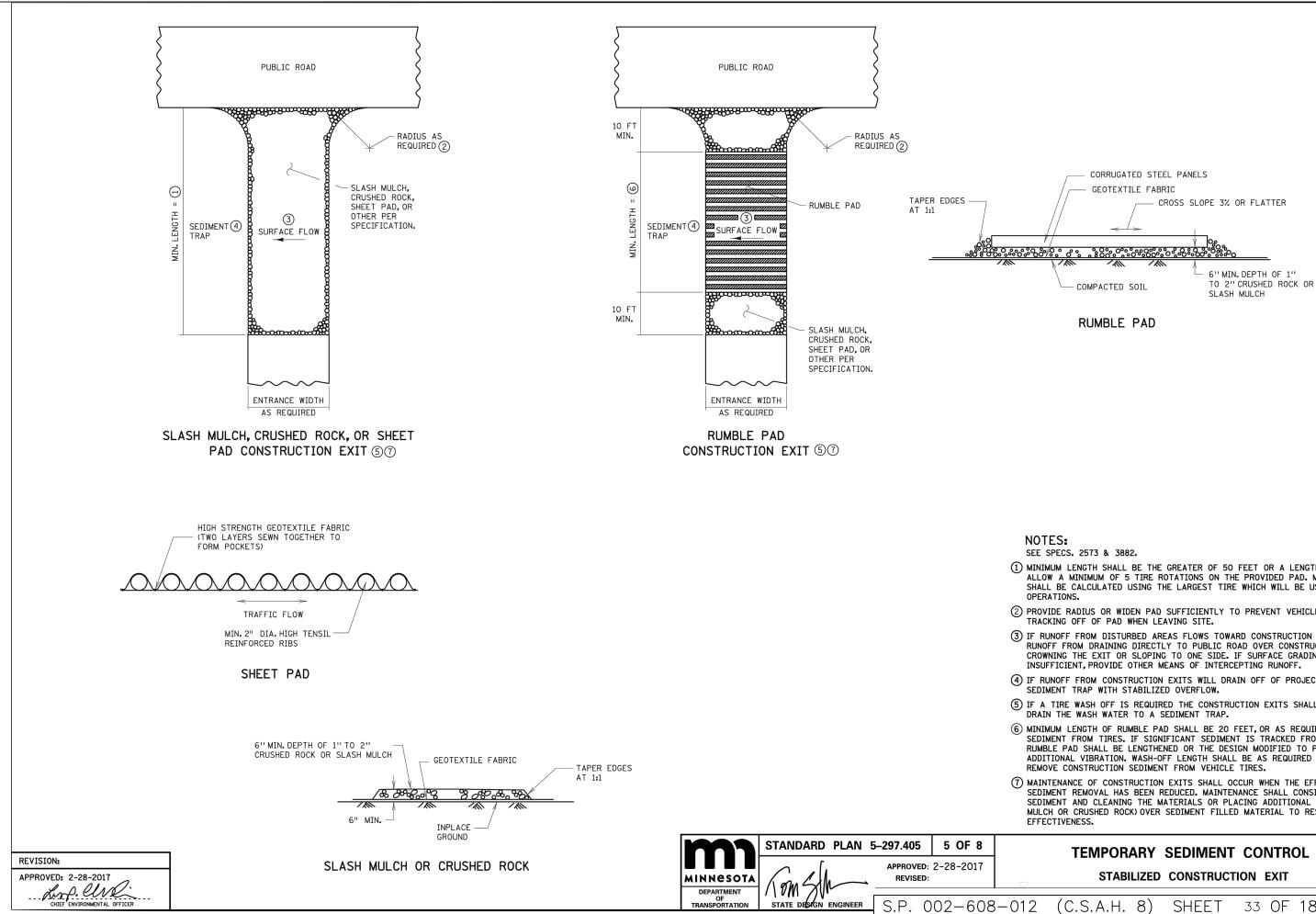
DITCH CHECK	
TEMPORARY SEDIMENT CONTROL	
OCITY 1.5 FT./SEC.	
OCITY 4.5 FT./SEC.	
CITY 12 FT./SEC.	
CLEAR ZONE ARE TO BE 18" OR LESS IN HEIGHT. A 1:6 APPROACH AN	D
HIGHER THAN POINT "B" TO ENSURE THAT WATER FLOWS OVER THE DI	KΕ
% CHANNEL SLOPE	

X 100

DITCH CHECK HEIGHT (FT.)

FILTER BERM TYPE 3 OR 5 (SHOWN)

H:\AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s405_4_spn.dwg


ctb

(Gen BMI

CAD

AutoC 4: 29

aylor1 4 / 22 /

H: \AKC0\T43118096\CAD\C3D\plans\Std_Plans\118096_s405_5_spn.dwg

ctb

(Gen BMI

PM

_ 4 □ 1

29

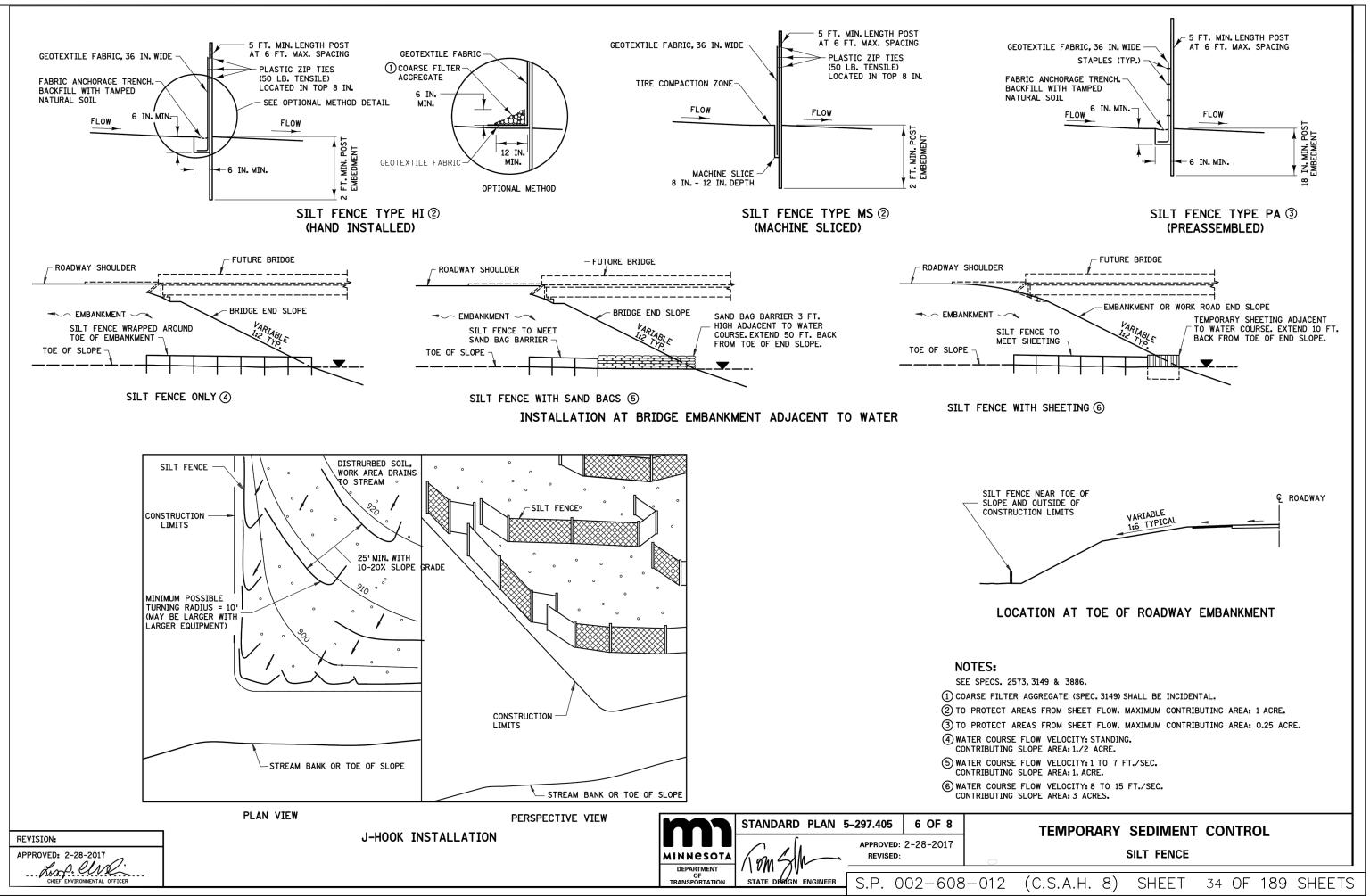
ylor' '22/

(1) MINIMUM LENGTH SHALL BE THE GREATER OF 50 FEET OR A LENGTH SUFFICIENT TO ALLOW A MINIMUM OF 5 TIRE ROTATIONS ON THE PROVIDED PAD. MINIMUM LENGTH SHALL BE CALCULATED USING THE LARGEST TIRE WHICH WILL BE USED IN TYPICAL

2 PROVIDE RADIUS OR WIDEN PAD SUFFICIENTLY TO PREVENT VEHICLE TIRES FROM

(3) IF RUNOFF FROM DISTURBED AREAS FLOWS TOWARD CONSTRUCTION EXITS, PREVENT RUNOFF FROM DRAINING DIRECTLY TO PUBLIC ROAD OVER CONSTRUCTION EXIT BY CROWNING THE EXIT OR SLOPING TO ONE SIDE. IF SURFACE GRADING IS

(4) IF RUNOFF FROM CONSTRUCTION EXITS WILL DRAIN OFF OF PROJECT SITE, PROVIDE


(5) IF A TIRE WASH OFF IS REQUIRED THE CONSTRUCTION EXITS SHALL BE GRADED TO

(6) MINIMUM LENGTH OF RUMBLE PAD SHALL BE 20 FEET, OR AS REQUIRED TO REMOVE SEDIMENT FROM TIRES. IF SIGNIFICANT SEDIMENT IS TRACKED FROM THE SITE, THE RUMBLE PAD SHALL BE LENGTHENED OR THE DESIGN MODIFIED TO PROVIDE ADDITIONAL VIBRATION. WASH-OFF LENGTH SHALL BE AS REQUIRED TO EFFECTIVELY

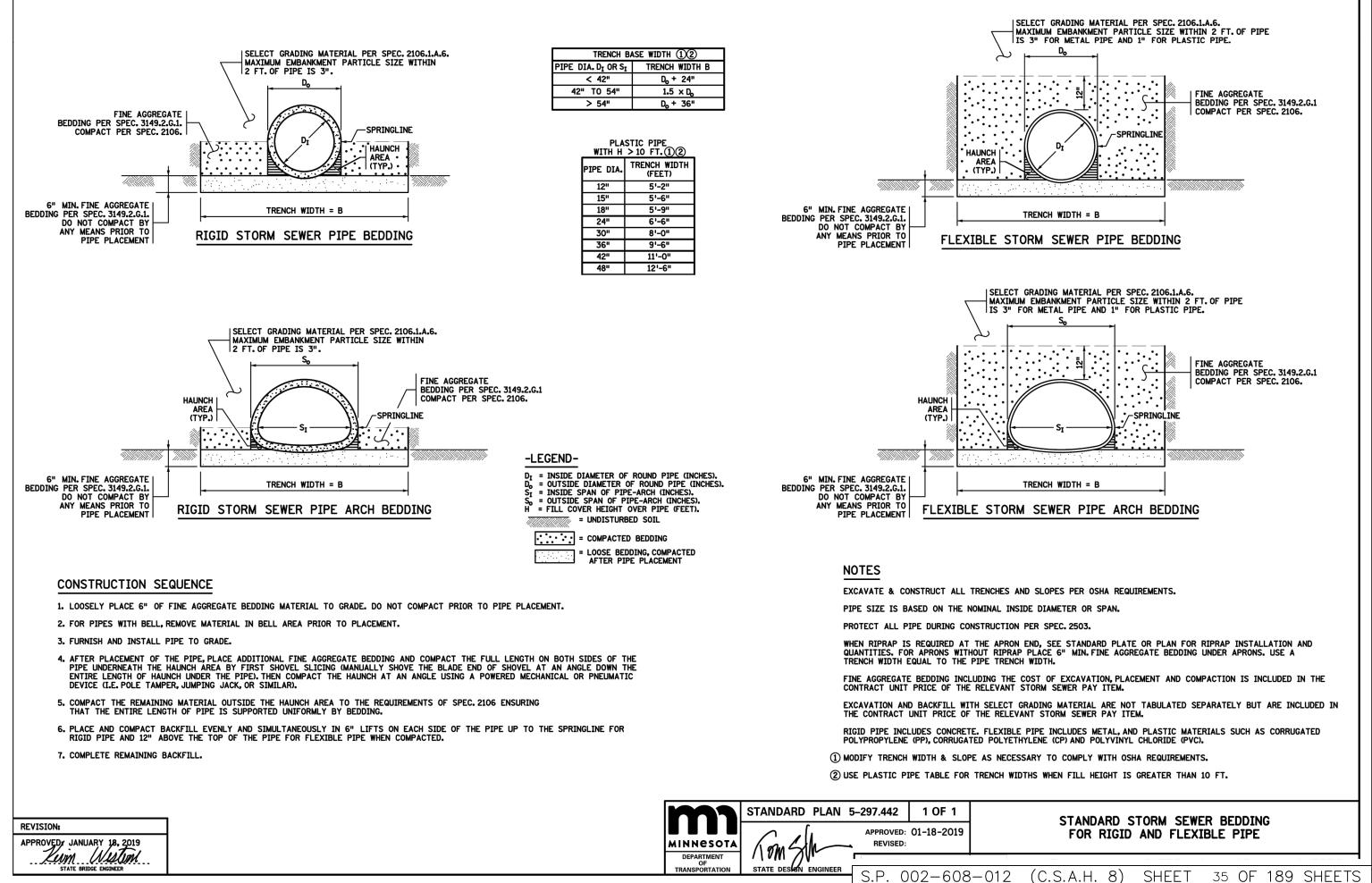
(7) MAINTENANCE OF CONSTRUCTION EXITS SHALL OCCUR WHEN THE EFFECTIVENESS OF SEDIMENT REMOVAL HAS BEEN REDUCED. MAINTENANCE SHALL CONSIST OF REMOVING SEDIMENT AND CLEANING THE MATERIALS OR PLACING ADDITIONAL MATERIAL (SLASH MULCH OR CRUSHED ROCK) OVER SEDIMENT FILLED MATERIAL TO RESTORE

TEMPORARY SEDIMENT CONTROL

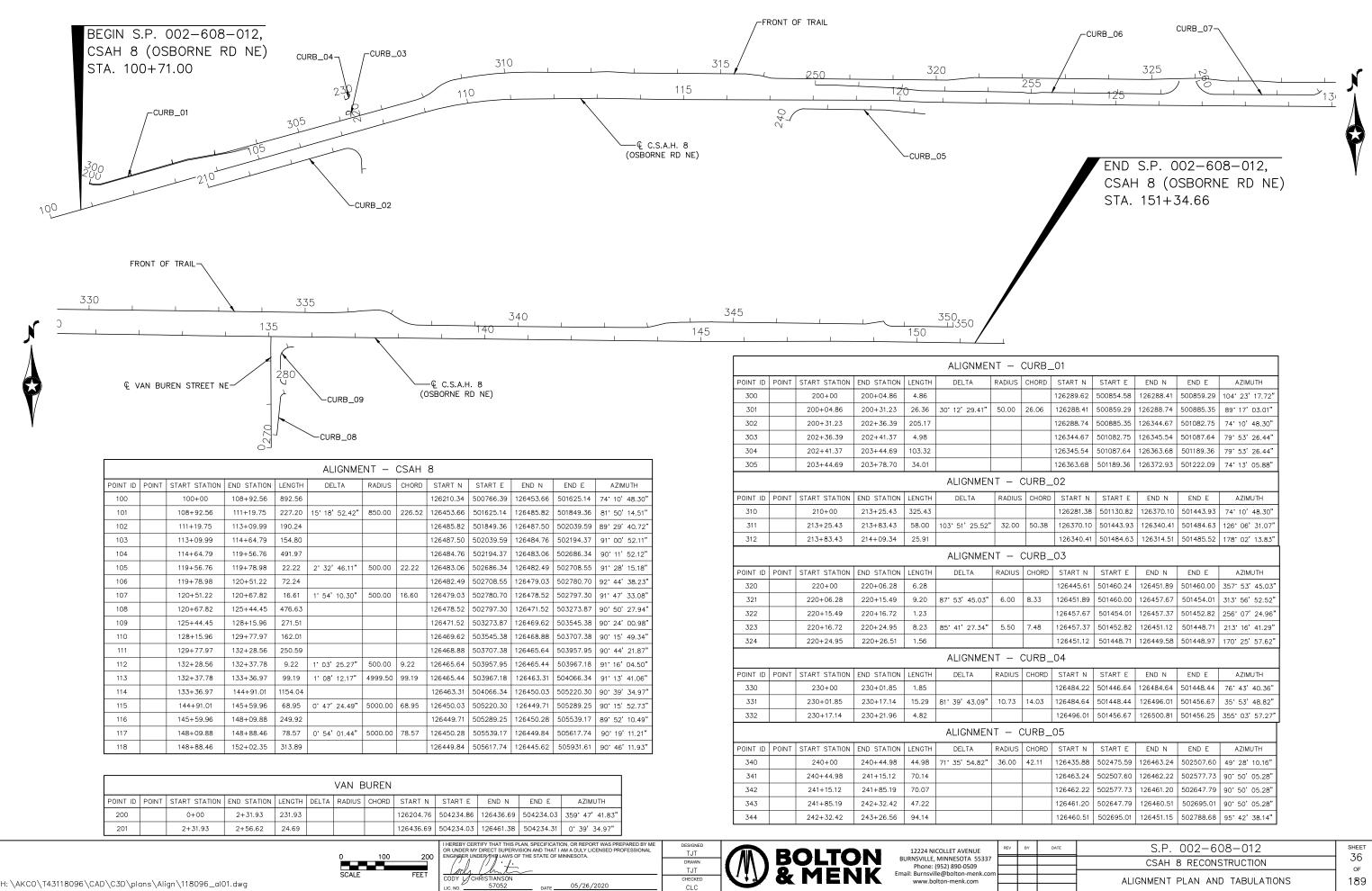
(C.S.A.H. 8) SHEET 33 OF 189 SHEETS

 $\label{eq:head} H: AKCO\T43118096\CAD\C3D\plans\Std_Plans\118096_s405_6_spn.dwg$

ctb


BMI

PM


29

2020

A 4

/lor 20,

CHECKE

& M

H: \AKCO\T43118096\CAD\C3D\plans\Align\118096_al01.dwg

SCALE

FEET

CODY LOCHRISTIANSON

57052

05/26/2020

DATE

5 J

2020

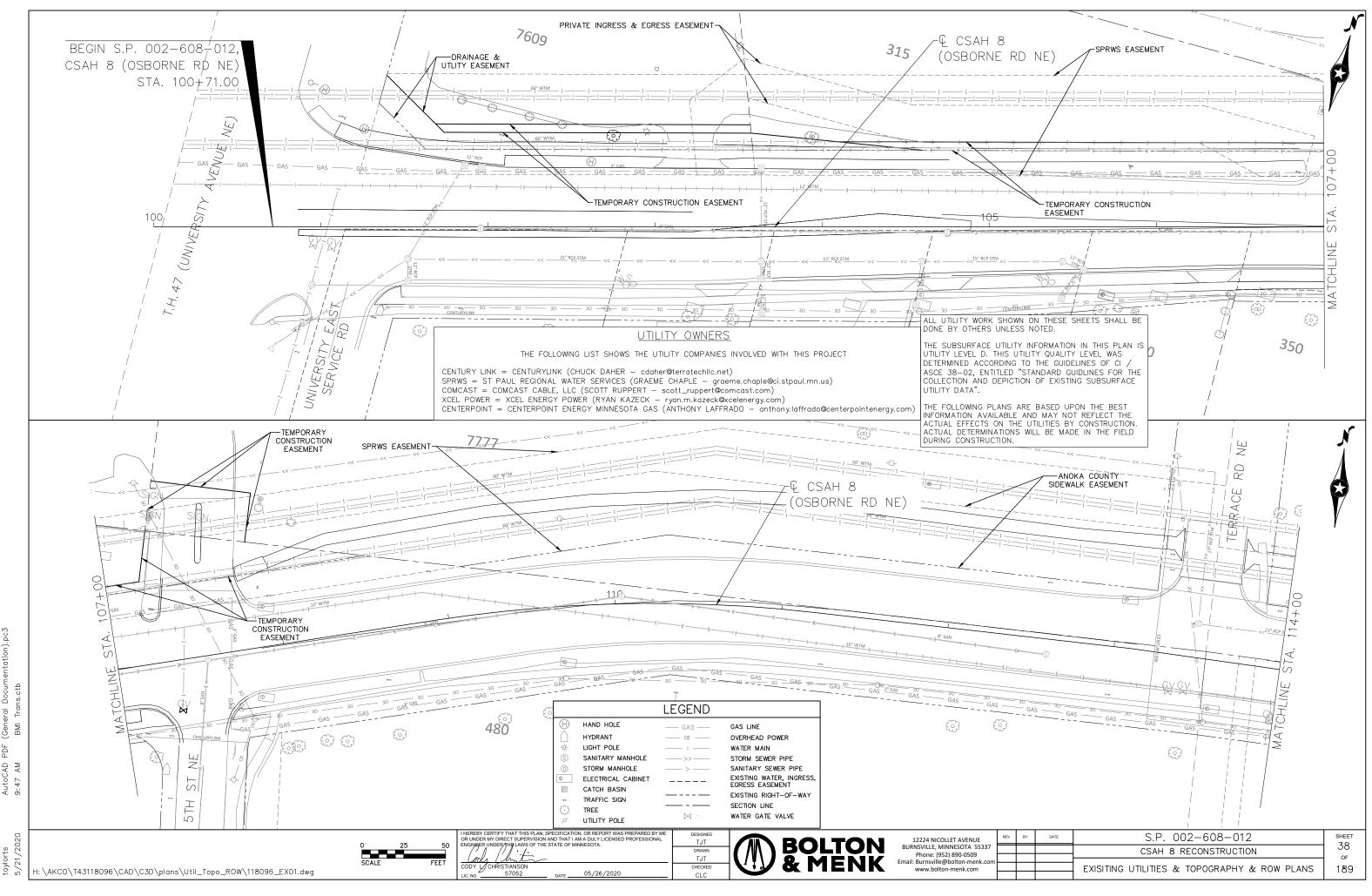
_	CUR	B_	.01					
NUS	CHO	RD	START	N	START E	END N	END E	AZIMUTH
			126289	.62	500854.58	126288.41	500859.29	104 23 17.72"
.00	26.0	6	126288	3.41	500859.29	126288.74	500885.35	89'17'03.01"
			126288	3.74	500885.35	126344.67	501082.75	74°10'48.30"
			126344	.67	501082.75	126345.54	501087.64	79* 53' 26.44"
			126345	5.54	501087.64	126363.68	501189.36	79' 53' 26.44"
			126363	5.68	501189.36	126372.93	501222.09	74°13'05.88"
_	CUR	В_	02					
DIUS	6 СН	ORD	STAR	ΤN	START E	END N	END E	AZIMUTH
			12628	31.38	501130.82	126370.10	501443.93	74 10 48.30"
2.00	50.	38	12637	0.10	501443.93	126340.41	501484.63	126'06'31.07"
			12634	0.41	501484.63	126314.51	501485.52	178 02'13.83"
_	CUR	Β_	.03					
DIUS	СНС	RD	STAR	ΓN	START E	END N	END E	AZIMUTH
			12644	5.61	501460.24	126451.89	501460.00	357 53 45.03"
00	8.33	3	12645	1.89	501460.00	126457.67	501454.01	313' 56' 52.52"
			12645	7.67	501454.01	126457.37	501452.82	256 07 24.96"
50	7.48	3	12645	7.37	501452.82	126451.12	501448.71	213 16 41.29"
			12645	1.12	501448.71	126449.58	501448.97	170° 25' 57.62"
_	CUR	В_	.04					
DIUS	СНО	RD	START	N	START E	END N	END E	AZIMUTH
			126484	1.22	501446.64	126484.64	501448.44	76 43 40.36"
.73	14.0	3	126484	1.64	501448.44	126496.01	501456.67	35 53 48.82"
			126496	6.01	501456.67	126500.81	501456.25	355 03 57.27"
_ (CUR	В_	05					
DIUS	СНО	RD	START	N	START E	END N	END E	AZIMUTH
.00	42.1	1	126435	5.88	502475.59	126463.24	502507.60	49' 28' 10.16"
			126463	3.24	502507.60	126462.22	502577.73	90 50 05.28"
			126462	2.22	502577.73	126461.20	502647.79	90'50'05.28"
			126461	.20	502647.79	126460.51	502695.01	90° 50' 05.28"
			126460	0.51	502695.01	126451.15	502788.68	95° 42' 38.14"
EV	BY	E	DATE			S.P.	002-6	08-012
						CSAH	8 RECONS	STRUCTION
			ł					

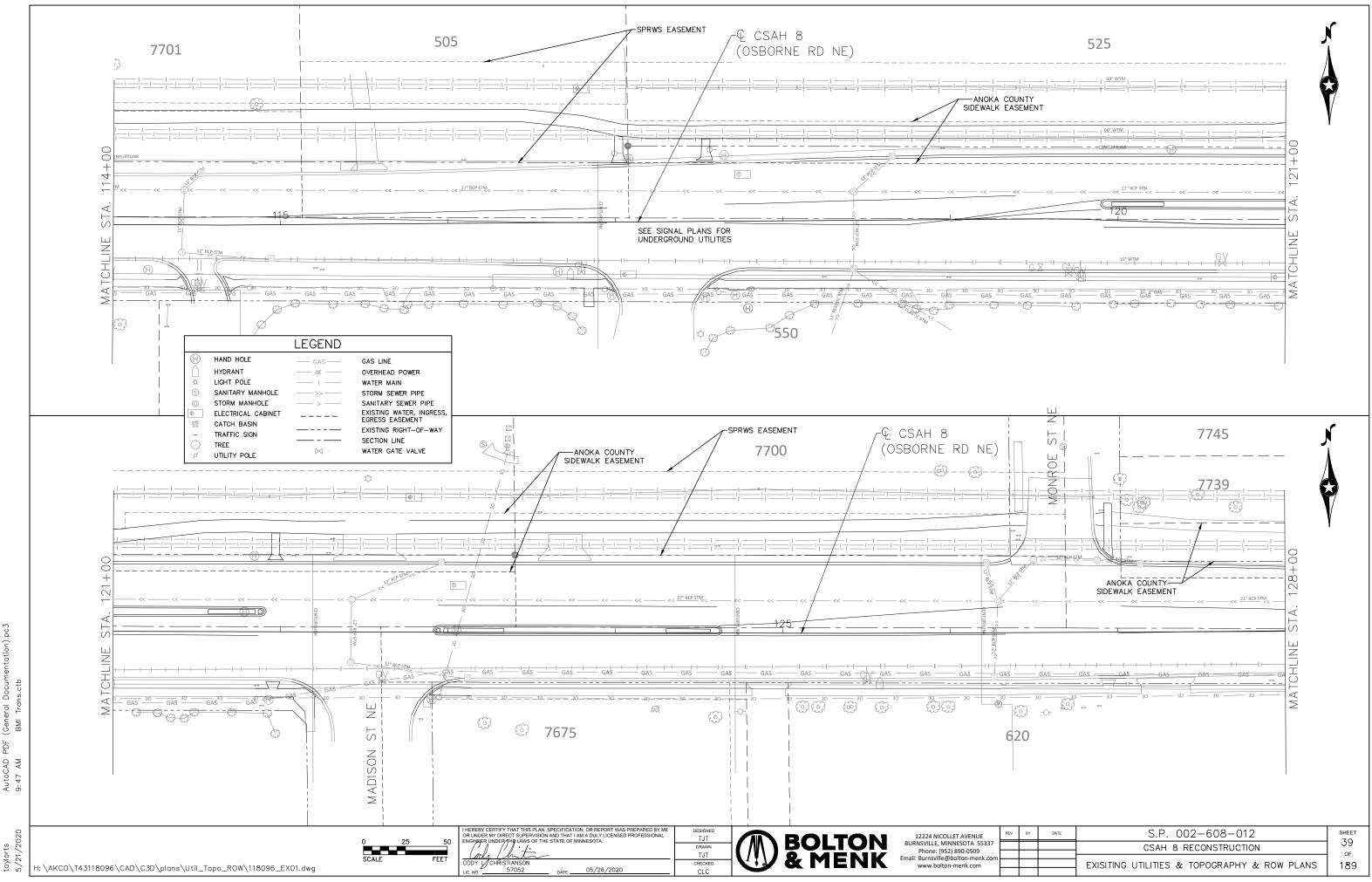
		CSAIL & RECONSTRUCTION	OF
_			0F
		ALIGNMENT PLAN AND TABULATIONS	189
			100

				A	LIGNMENT -	- FRO	NIOF	IRAIL				
POINT ID	POINT	START STATION	END STATION	LENGTH	DELTA	RADIUS	CHORD	START N	START E	END N	END E	AZIMUTH
400		300+00	300+30.19	30.19	34 24 25.64"	50.27	29.74	126291.56	500855.08	126290.66	500884.80	91°43'37.14
401		300+30.19	302+35.46	205.27				126290.66	500884.80	126346.62	501082.30	74'10'48.30
402		302+35.46	302+48.39	12.94				126346.62	501082.30	126348.89	501095.03	79' 53' 26.44
403		302+48.39	303+22.09	73.70				126348.89	501095.03	126361.83	501167.59	79°53'26.44
404		303+22.09	305+84.37	262.28				126361.83	501167.59	126431.51	501420.44	74' 35' 36.60
405		305+84.37	306+14.14	29.77				126431.51	501420.44	126439.42	501449.14	74°35'36.60
406		306+14.14	306+74.59	60.45				126439.42	501449.14	126455.47	501507.41	74°35'36.60
407		306+74.59	307+82.90	108.32				126455.47	501507.41	126484.25	501611.84	74°35'36.60
408		307+82.90	308+32.25	49.35	26'10'54.01"	108.00	48.92	126484.25	501611.84	126507.59	501654.83	61' 30' 09.59
409		308+32.25	308+83.78	51.52	29°31'17.02"	100.00	50.96	126507.59	501654.83	126530.59	501700.31	63°10'21.09
410		308+83.78	308+90.54	6.76				126530.59	501700.31	126531.96	501706.93	78°18'31.99
411		308+90.54	308+92.16	1.62				126531.96	501706.93	126532.30	501708.51	77 56 04.06
412		308+92.16	308+94.72	2.56				126532.30	501708.51	126532.81	501711.02	78°23'02.59
413		308+94.72	309+00.88	6.16				126532.81	501711.02	126533.97	501717.07	79'09'26.98
414		309+00.88	310+55.70	154.82	11' 13' 01.51"	790.80	154.57	126533.97	501717.07	126548.07	501870.99	84° 45' 57.74
415		310+55.70	311+87.03	131.33				126548.07	501870.99	126547.21	502002.32	90* 22' 28.49
416		311+87.03	312+20.39	33.36				126547.21	502002.32	126548.54	502035.65	87 43 43.82
417		312+20.39	312+38.29	17.91				126548.54	502035.65	126549.25	502053.55	87 43 43.82
418		312+38.29	312+50.72	12.43				126549.25	502053.55	126548.57	502065.96	93'05'41.86
419		312+50.72	312+83.58	32.86				126548.57	502065.96	126546.80	502098.77	93'05'41.86
420		312+83.58	312+92.81	9.23				126546.80	502098.77	126546.30	502107.98	93'05'41.86
421		312+92.81	315+59.27	266.46				126546.30	502107.98	126543.92	502374.44	90' 30' 45.25
422		315+59.27	315+93.22	33.95				126543.92	502374.44	126539.98	502408.16	96' 39' 30.85
423		315+93.22	316+18.63	25.41				126539.98	502408.16	126534.40	502432.94	102* 41' 45.95
424		316+18.63	316+31.52	12.89				126534.40	502432.94	126533.54	502445.81	93° 47' 37.46
425		316+31.52	320+27.01	395.48				126533.54	502445.81	126529.73	502841.28	90* 33' 07.04
426		320+27.01	320+89.03	62.02				126529.73	502841.28	126535.47	502903.03	84'41'30.58
427		320+89.03	324+87.96	398.92				126535.47	502903.03	126531.16	503301.93	90° 37' 07.90
428		324+87.96	325+61.77	73.81				126531.16	503301.93	126533.24	503375.72	88 23 06.89
429		325+61.77	326+12.98	51.21				126533.24	503375.72	126534.27	503426.92	88' 51' 23.55
430		326+12.98	326+72.69	59.72				126534.27	503426.92	126527.52	503486.25	96' 29' 19.42
431		326+72.69	327+50.08	77.39				126527.52	503486.25	126527.69	503563.64	89' 52' 12.83
432		327+50.08	327+85.93	35.84				126527.69	503563.64	126525.16	503599.39	94' 02' 43.46
433		327+85.93	327+92.76	6.83				126525.16	503599.39	126524.90	503606.22	92.14'03.25
434		327+92.76	328+82.11	89.35				126524.90	503606.22	126524.24	503695.57	90°25'23.04
435		328+82.11	328+98.09	15.98				126524.24	503695.57	126524.74	503711.54	88° 12' 32.18
436		328+98.09	329+29.89	31.80				126524.74	503711.54	126524.35	503743.34	90' 42' 25.14

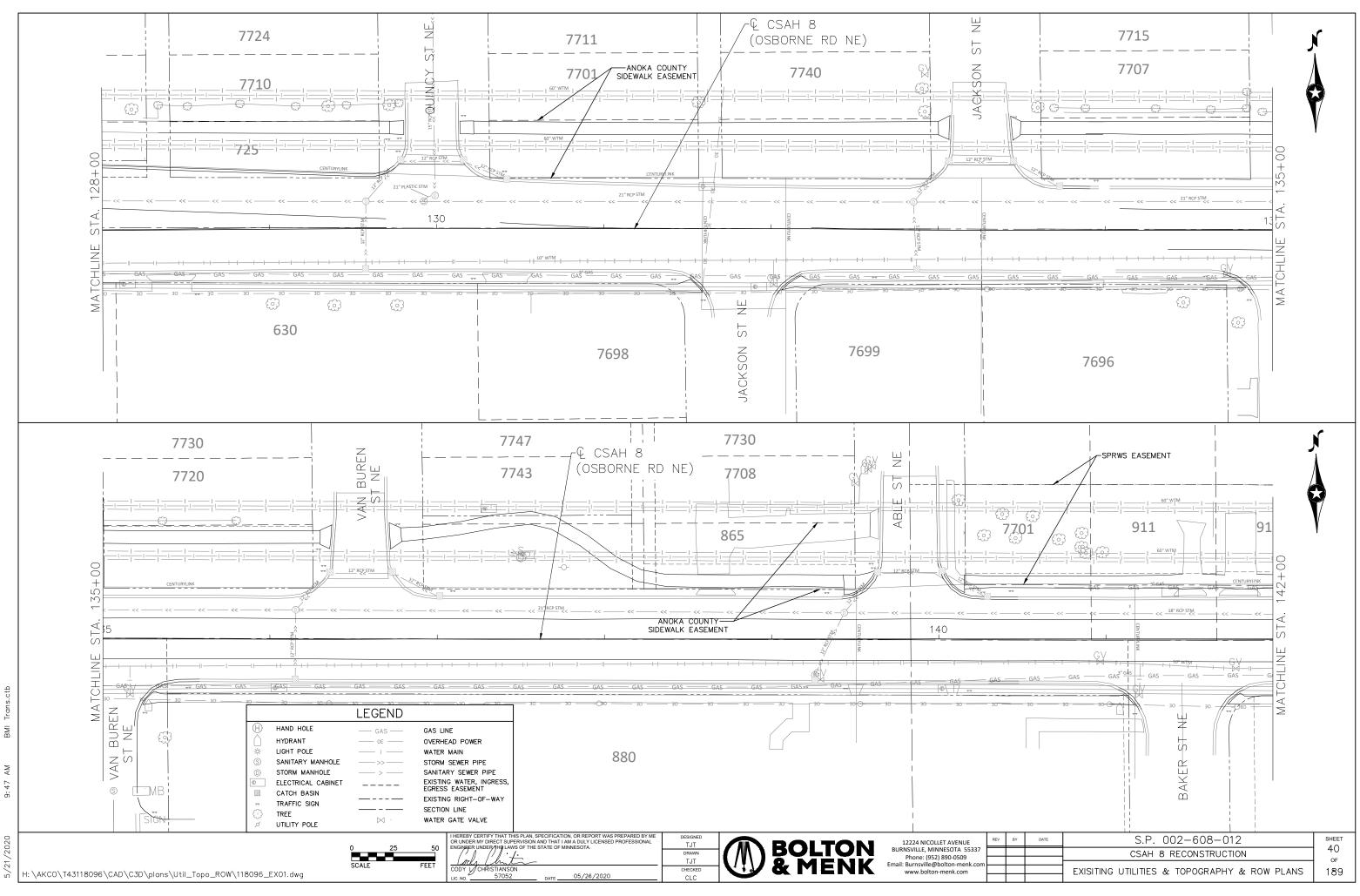
				A	LIGNMENT -	- FRO	NT OF	TRAIL				
POINT ID	POINT	START STATION	END STATION	LENGTH	DELTA	RADIUS	CHORD	START N	START E	END N	END E	AZIMUTH
437		329+29.89	332+24.27	294.38				126524.35	503743.34	126520.71	504037.69	90°42′25.14″
438		332+24.27	332+59.80	35.53				126520.71	504037.69	126520.27	504073.22	90°42′25.14″
439		332+59.80	335+53.57	293.77				126520.27	504073.22	126516.65	504366.97	90°42′25.14″
440		335+53.57	335+87.72	34.15				126516.65	504366.97	126517.58	504401.11	88'26'30.39"
441		335+87.72	336+08.92	21.20				126517.58	504401.11	126518.40	504422.29	87' 46' 42.89"
442		336+08.92	336+31.36	22.44				126518.40	504422.29	126520.99	504444.58	83 22 37.10"
443		336+31.36	336+60.24	28.88				126520.99	504444.58	126522.30	504473.44	87'24'04.35"
444		336+60.24	337+06.22	45.98	35' 35' 58.92"	74.00	45.24	126522.30	504473.44	126510.44	504517.09	105 12 03.81"
445		337+06.22	337+22.30	16.08				126510.44	504517.09	126501.68	504530.58	123 00 03.27"
446		337+22.30	337+70.01	47.71	32'09'36.90"	85.00	47.09	126501.68	504530.58	126487.97	504575.63	106 55 14.82"
447		337+70.01	338+79.88	109.87				126487.97	504575.63	126486.36	504685.48	90' 50' 26.37"
448		338+79.88	339+34.16	54.29				126486.36	504685.48	126485.57	504739.76	90' 50' 26.37"
449		339+34.16	340+17.37	83.21				126485.57	504739.76	126484.35	504822.96	90' 50' 26.37"
450		340+17.37	342+39.14	221.77				126484.35	504822.96	126482.41	505044.72	90'29'57.87"
451		342+39.14	342+88.34	49.20				126482.41	505044.72	126482.41	505093.92	89' 59' 55.70"
452		342+88.34	342+93.97	5.62				126482.41	505093.92	126482.56	505099.55	88* 30' 38.81"
453		342+93.97	342+99.28	5.31				126482.56	505099.55	126482.97	505104.84	85' 36' 35.74"
454		342+99.28	343+09.59	10.31				126482.97	505104.84	126484.50	505115.04	81'27'54.09"
455		343+09.59	343+43.45	33.87				126484.50	505115.04	126492.32	505147.99	76* 38' 27.82"
456		343+43.45	343+76.26	32.81				126492.32	505147.99	126494.34	505180.74	86'27'56.92"
457		343+76.26	343+88.24	11.98				126494.34	505180.74	126494.44	505192.71	89' 31' 04.21"
458		343+88.24	344+24.74	36.50				126494.44	505192.71	126494.75	505229.21	89' 31' 04.21"
459		344+24.74	344+34.70	9.96				126494.75	505229.21	126494.84	505239.17	89' 31' 04.21"
460		344+34.70	344+46.85	12.16				126494.84	505239.17	126495.13	505251.32	88' 37' 06.29"
462		344+46.85	344+50.54	3.69	2* 06' 42.18"	100.00	3.69	126495.13	505251.32	126495.15	505255.01	89'40'27.38"
463		344+50.54	348+05.82	355.28				126495.15	505255.01	126490.62	505610.26	90* 43' 48.47"
464		348+05.82	348+47.97	42.15				126490.62	505610.26	126496.96	505651.92	81'20'57.15"
465		348+47.97	348+55.06	7.09				126496.96	505651.92	126490.85	505655.52	149' 33' 30.03"
466		348+55.06	348+62.88	7.82				126490.85	505655.52	126487.10	505662.38	118 36' 35.55"
467		348+62.88	348+70.40	7.52				126487.10	505662.38	126485.60	505669.75	101° 31' 46.53"
468		348+70.40	348+76.86	6.46				126485.60	505669.75	126485.57	505676.22	90° 16' 13.17"
469		348+76.86	348+83.33	6.46				126485.57	505676.22	126485.54	505682.68	90° 16' 13.17"
470		348+83.33	348+87.42	4.09				126485.54	505682.68	126485.28	505686.77	93° 34' 15.95"
471		348+87.42	349+62.98	75.55				126485.28	505686.77	126484.22	505762.31	90' 48' 08.49"
472		349+62.98	349+94.20	31.23				126484.22	505762.31	126483.86	505793.54	90' 40' 24.24"
473		349+94.20	350+05.35	11.15				126483.86	505793.54	126483.71	505804.69	90' 45' 56.08"
474		350+05.35	350+13.76	8.41				126483.71	505804.69	126483.88	505813.09	88' 51' 42.73"

					ALIGNMEN	νT – (CURB_	08				
POINT ID	POINT	START STATION	END STATION	LENGTH	DELTA	RADIUS	CHORD	START N	START E	END N	END E	AZIMUTH
370		270+00	270+80.40	80.40				126233.61	504248.03	126313.62	504255.92	5° 37' 43.76"
371		270+80.40	270+84.40	4.00				126313.62	504255.92	126317.62	504255.91	359 55 05.62"
372		270+84.40	271+02.48	18.08	90'04'54.38"	11.50	16.28	126317.62	504255.91	126329.14	504267.41	44 57 32.81"
373		271+02.48	271+03.48	1.00				126329.14	504267.41	126329.14	504268.41	90.00, 00.00
					ALIGNMEN	νT – Ο	CURB_	_09				
POINT ID	POINT	START STATION	END STATION	LENGTH	DELTA	RADIUS	CHORD	START N	START E	END N	END E	AZIMUTH
380		280+00	280+01	1.00				126351.14	504268.35	126351.14	504267.35	270' 00' 00.00"
381		280+01	280+19.05	18.05	89 55 05.62"	11.50	16.25	126351.14	504267.35	126362.62	504255.85	314 57 32.81"
382		280+19.05	280+66.72	47.67				126362.62	504255.85	126410.29	504255.78	359 55 05.62"
383		280+66.72	281+08.50	41.77	90°19'12.71"	26.50	37.58	126410.29	504255.78	126436.83	504282.39	45'04'41.98"
384		281+08.50	281+12.90	4.40				126436.83	504282.39	126436.81	504286.79	90* 14' 18.33"

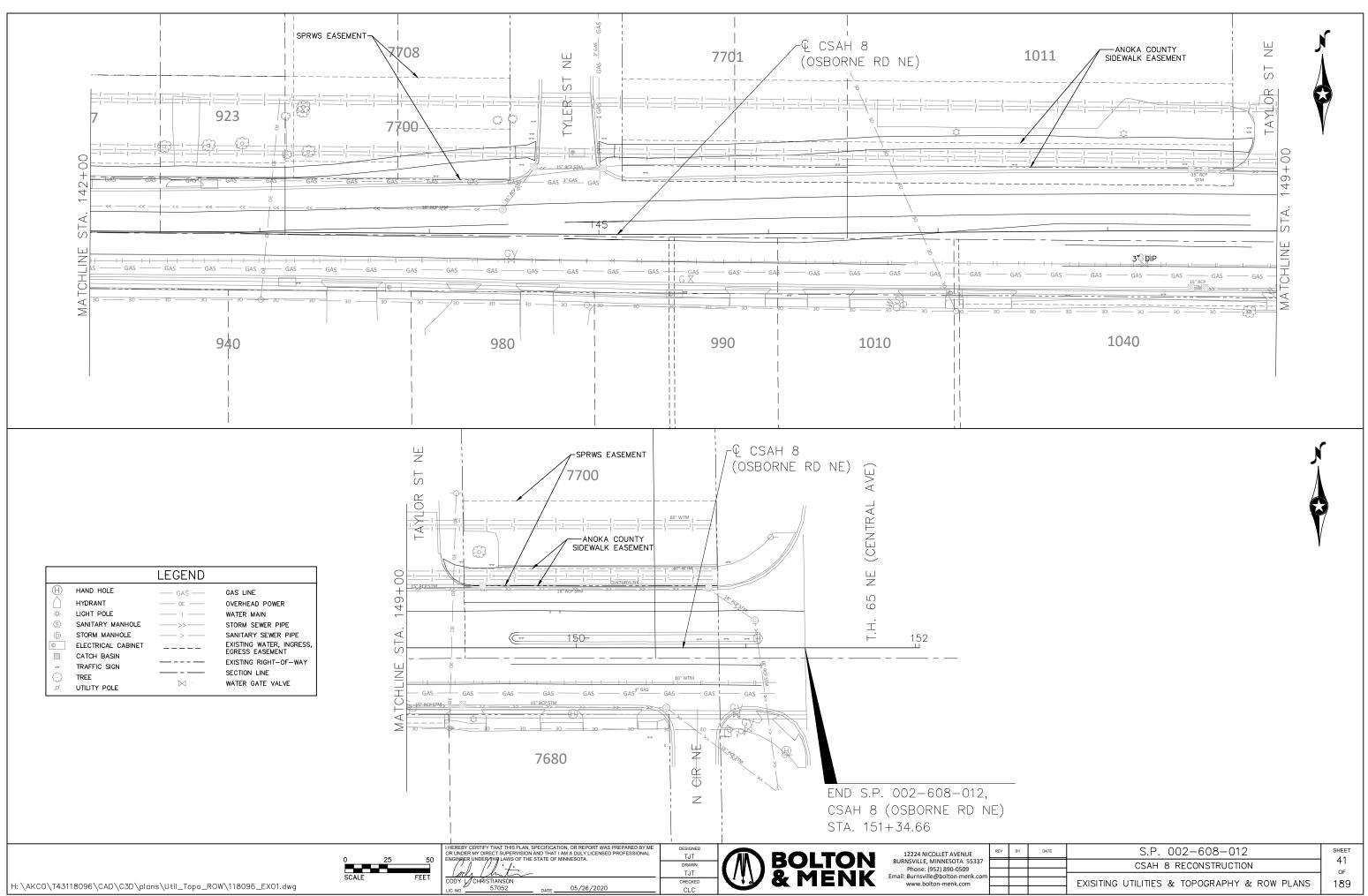

					ALIGNMEN	IT – (URB_	06				
POINT ID	POINT	START STATION	END STATION	LENGTH	DELTA	RADIUS	CHORD	START N	START E	END N	END E	AZIMUTH
350		250+00	250+44.77	44.77				126518.85	502535.00	126518.20	502579.77	90'50'05.28"
351		250+44.77	251+05.45	60.68				126518.20	502579.77	126515.29	502640.38	92*44' 38.23"
352		251+05.45	251+81.57	76.12				126515.29	502640.38	126511.65	502716.41	92•44' 38.23"
353		251+81.57	252+45.61	64.04				126511.65	502716.41	126505.27	502780.13	95 43 01.65"
354		252+45.61	253+97.04	151.43				126505.27	502780.13	126503.05	502931.55	90 50 27.94"
355		253+97.04	254+76.69	79.65				126503.05	502931.55	126501.71	503011.18	90' 57' 44.59"
357		258+06.31	258+55.97	49.66	75'00'47.08"	37.93	46.19	126497.55	503340.57	126526.84	503376.28	50° 38' 37.32"


					ALIGNMEN	NT — (CURB_	_07				
POINT ID	POINT	START STATION	END STATION	LENGTH	DELTA	RADIUS	CHORD	START N	START E	END N	END E	AZIMUTH
360		260+00	260+52.85	52.85	67 12 43.24"	45.06	49.87	126526.16	503415.44	126496.75	503455.72	126'08'32.61"
361		260+52.85	261+43.30	90.45				126496.75	503455.72	126496.12	503546.16	90°24'00.07"
362		261+43.30	261+43.67	0.37				126496.12	503546.16	126496.12	503546.53	90'00'59.22"
363		261+43.67	262+84.93	141.26				126496.12	503546.53	126495.48	503687.79	90°15'37.20"
364		262+84.93	263+05.60	20.67	37°29'50.21"	31.58	20.30	126495.48	503687.79	126505.33	503705.54	60 57 51.88"

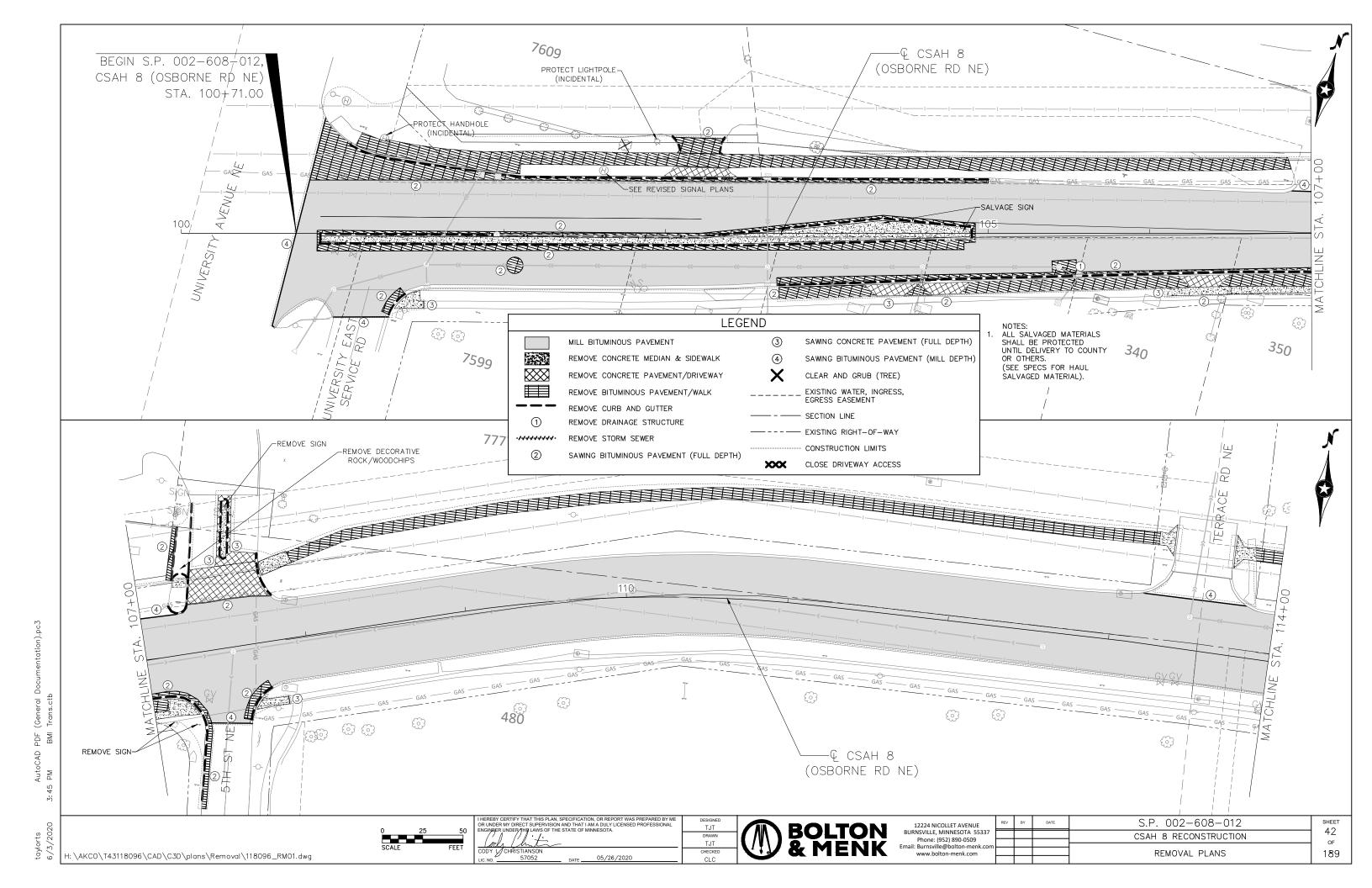
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDERTHIE LWS OF THE STATE OF MINNESOTA	designed TJT		REV
lode Chita	drawn TJT	BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com	
CODY UCHRISTIANSON LIC. NO. 57052 DATE 05/26/2020	CHECKED CLC		

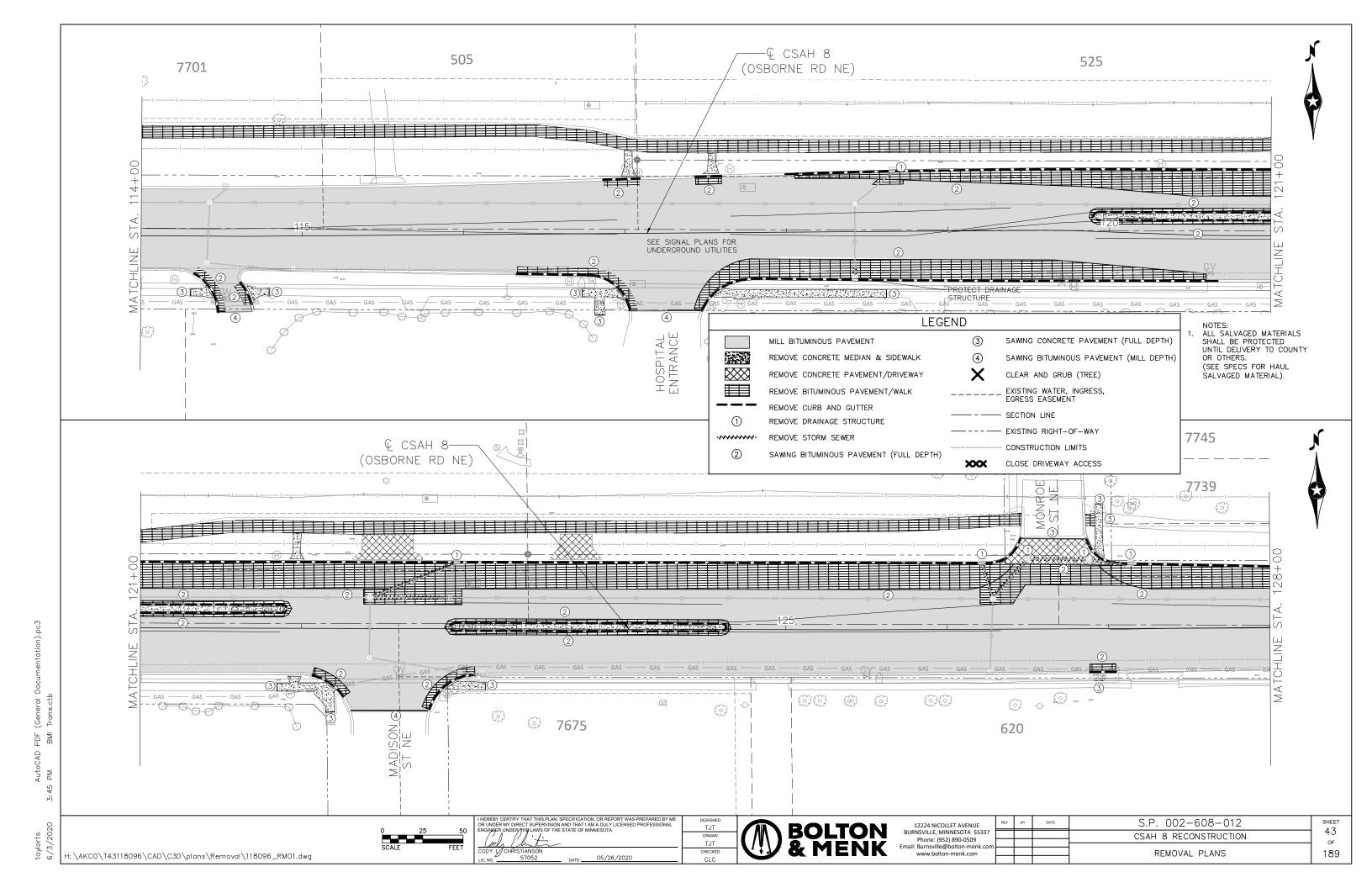

taylorts 5/26/2020

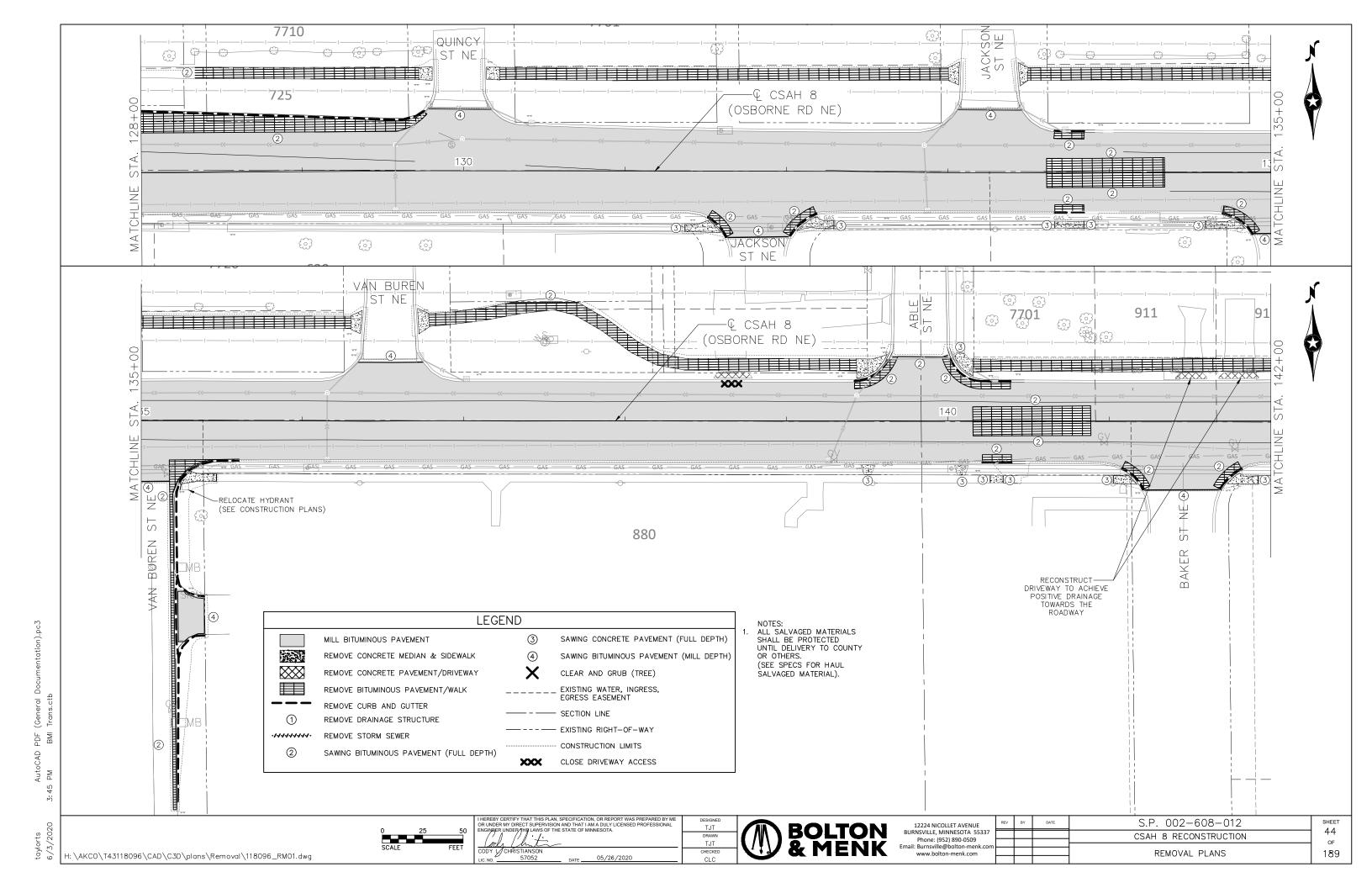
EV	BY	DATE	S.P. 002-608-012	SHEET	
			CSAH 8 RECONSTRUCTION	J/ OF	
			ALIGNMENT PLAN AND TABULATIONS	189	
				,00	

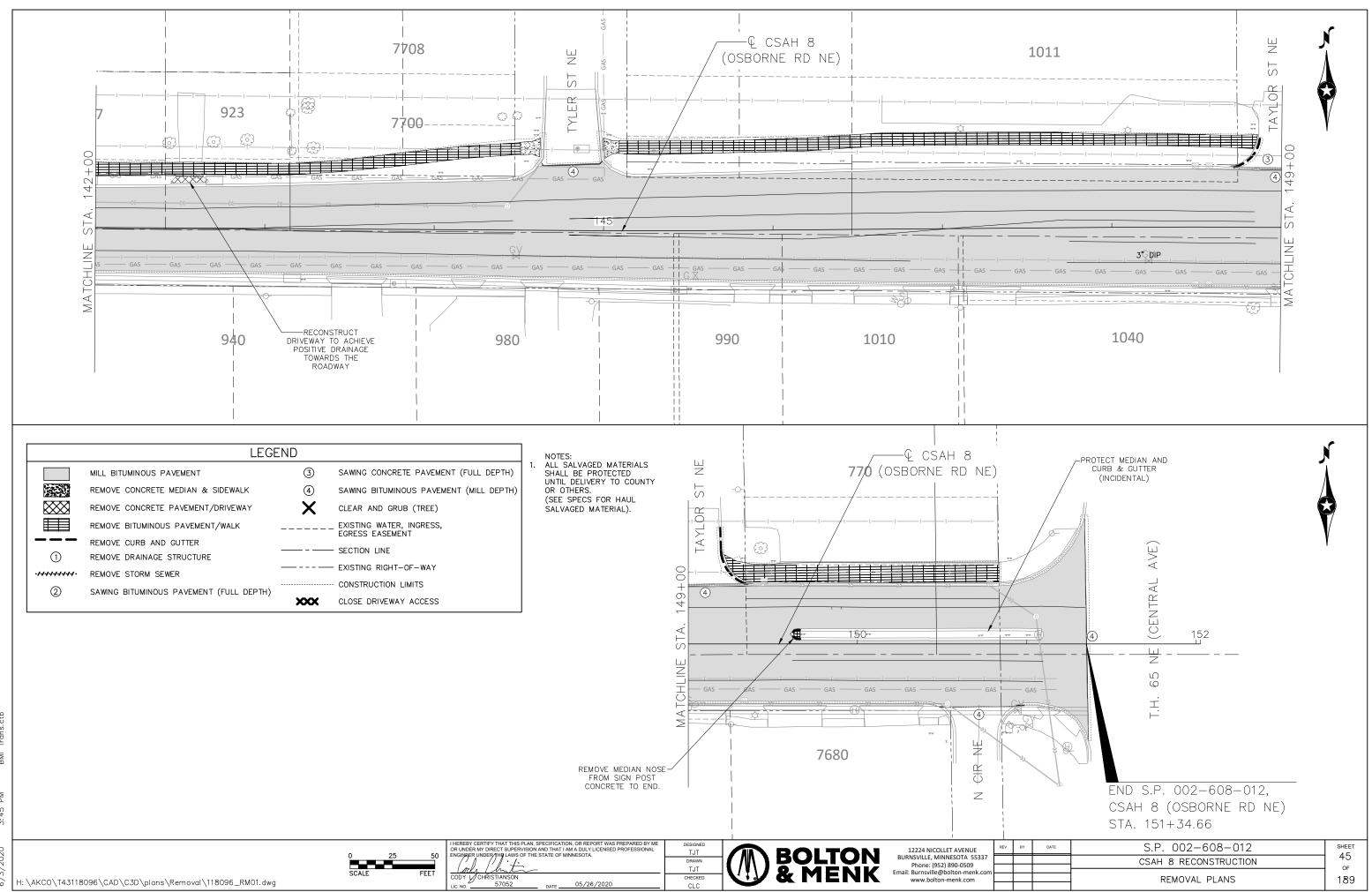


pc3 ctb ŏ Tra (Gene BMI PDF AutoCAD 9:47 AM

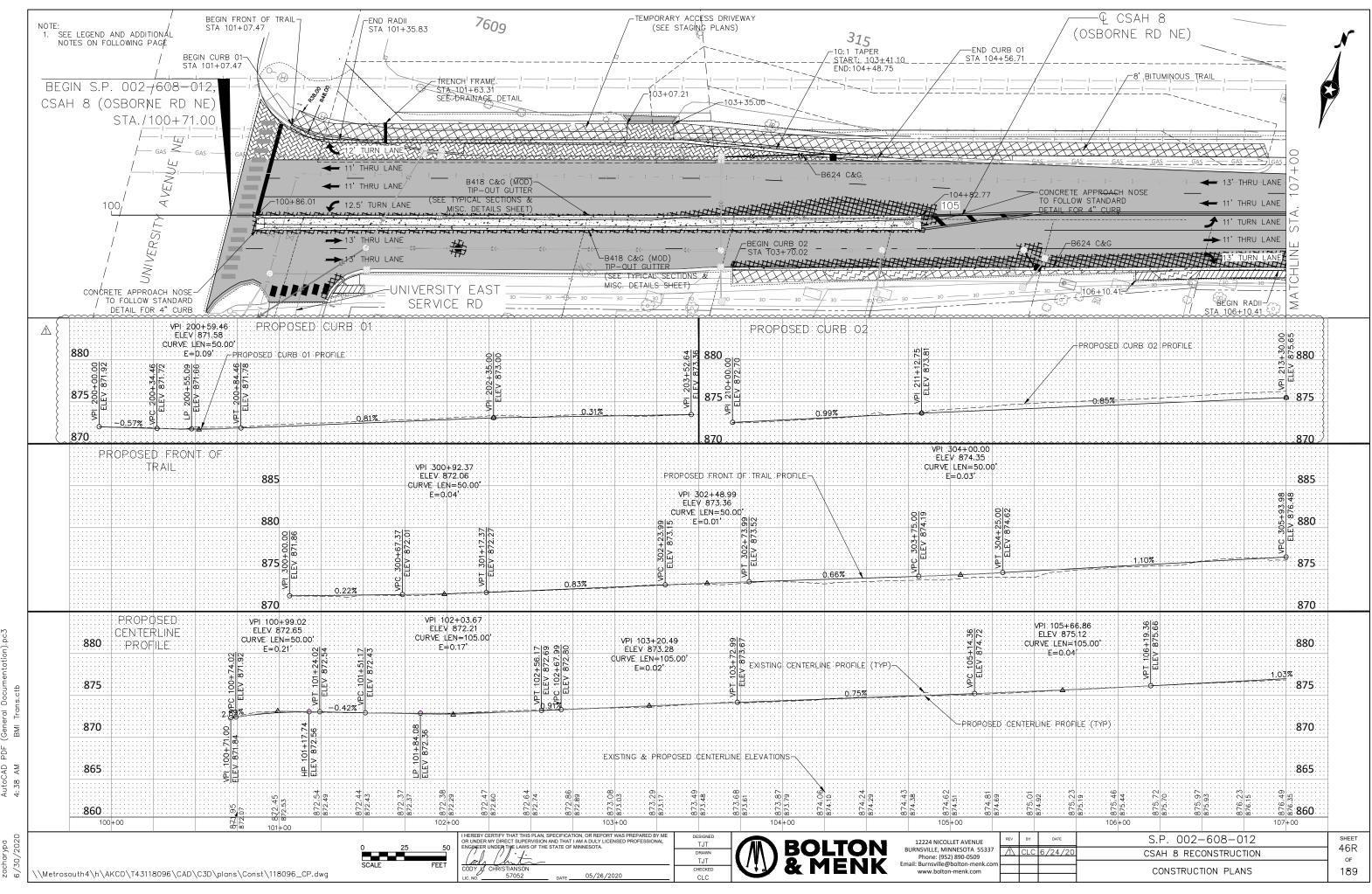

AutoCAD PDF (General Documentation).pc3 9:47 AM BMI Trans.ctb

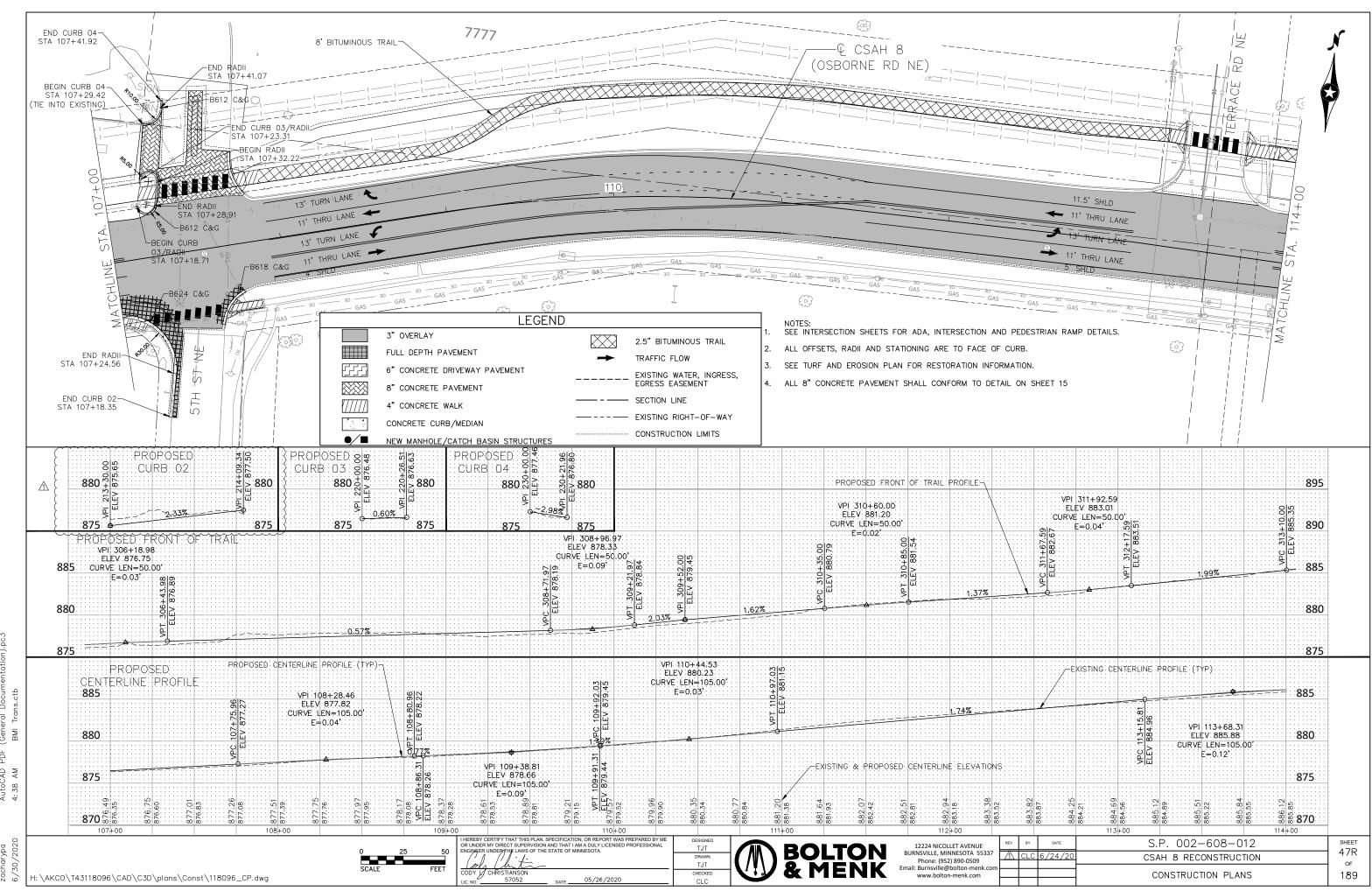

taylorts 5/21/2020




AutoCAD PDF (General Documentation).pc3 9:47 AM BMI Trans.ctb

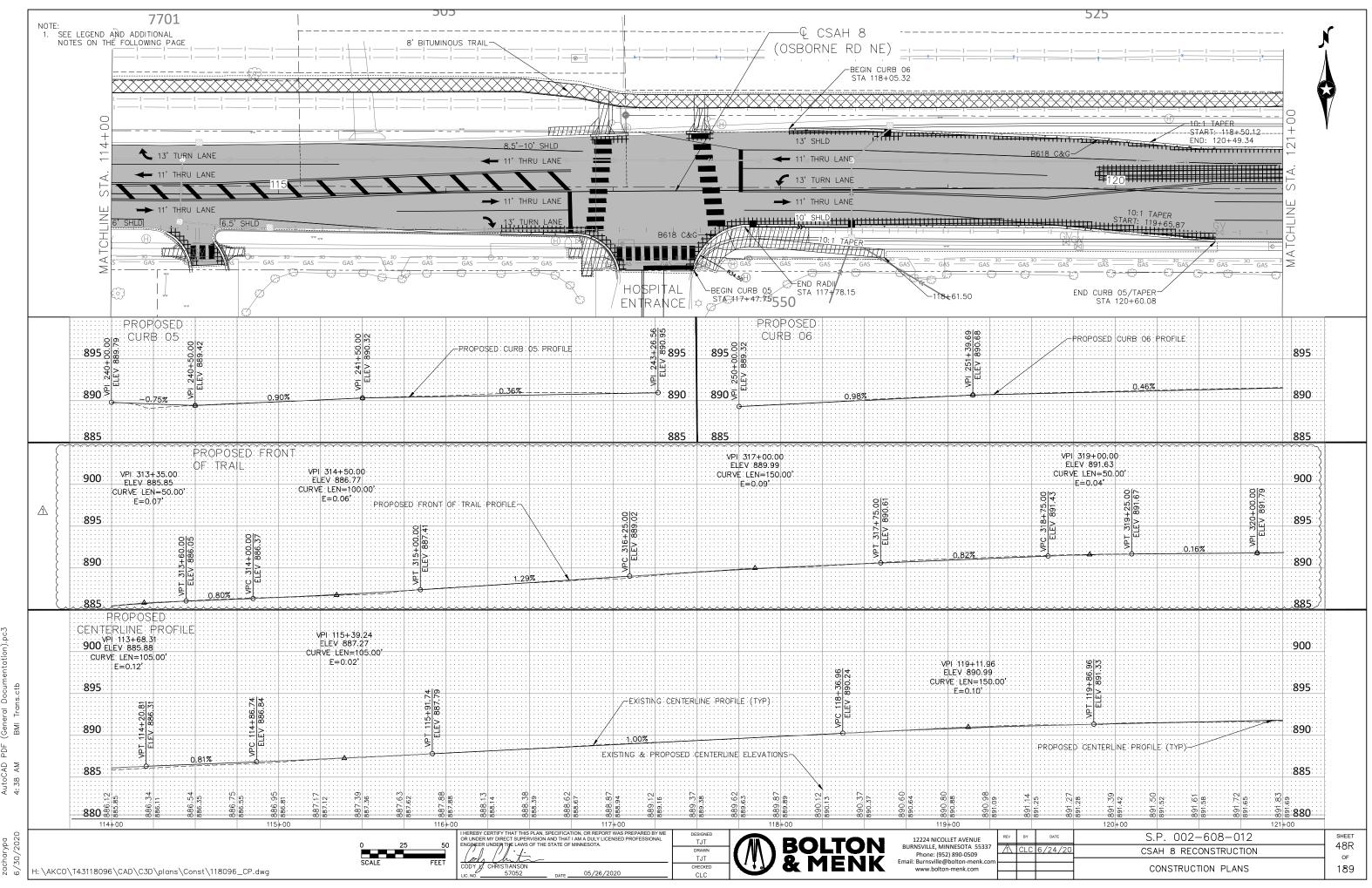
taylorts 5/21/2020




ts AutoCAD PDF (General Documentatio 2020 3:45 PM BMI Trans.ctb

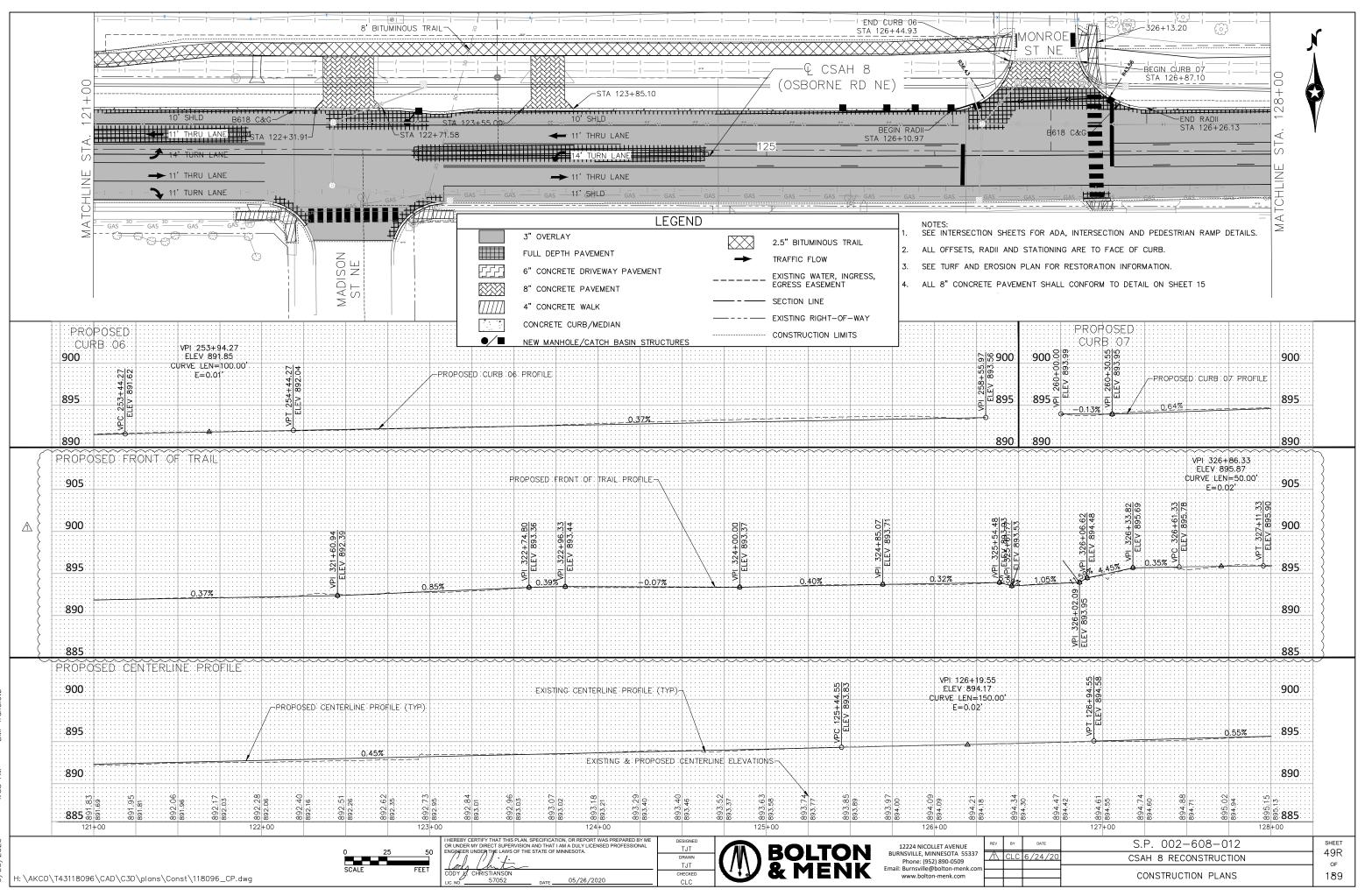
pc3

taylort: 6/3/2(


ctb BMI AM AutoC 4: 38

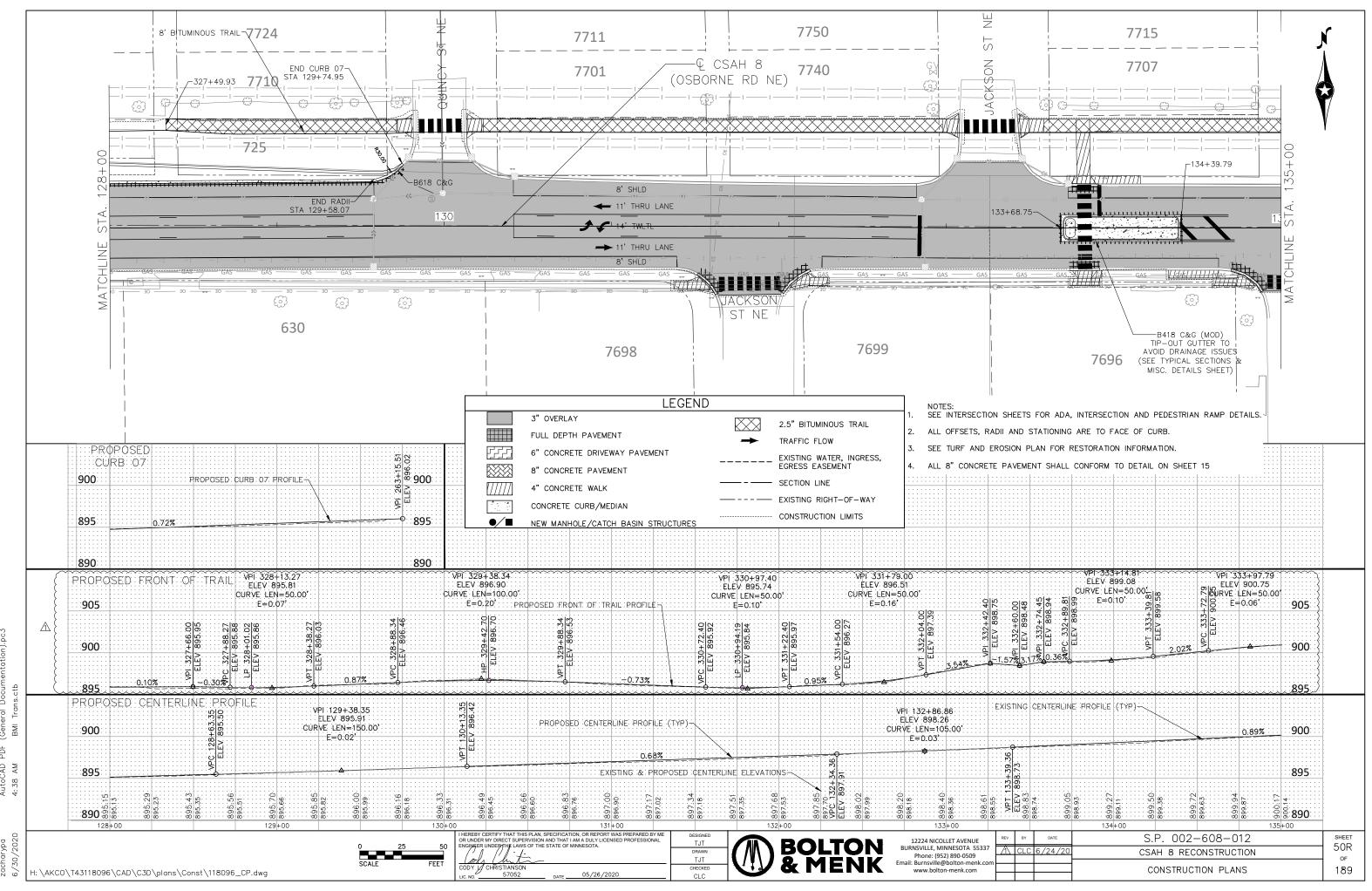
ctb ŏ (Gene BMI CAD AutoC 4: 38

pc3

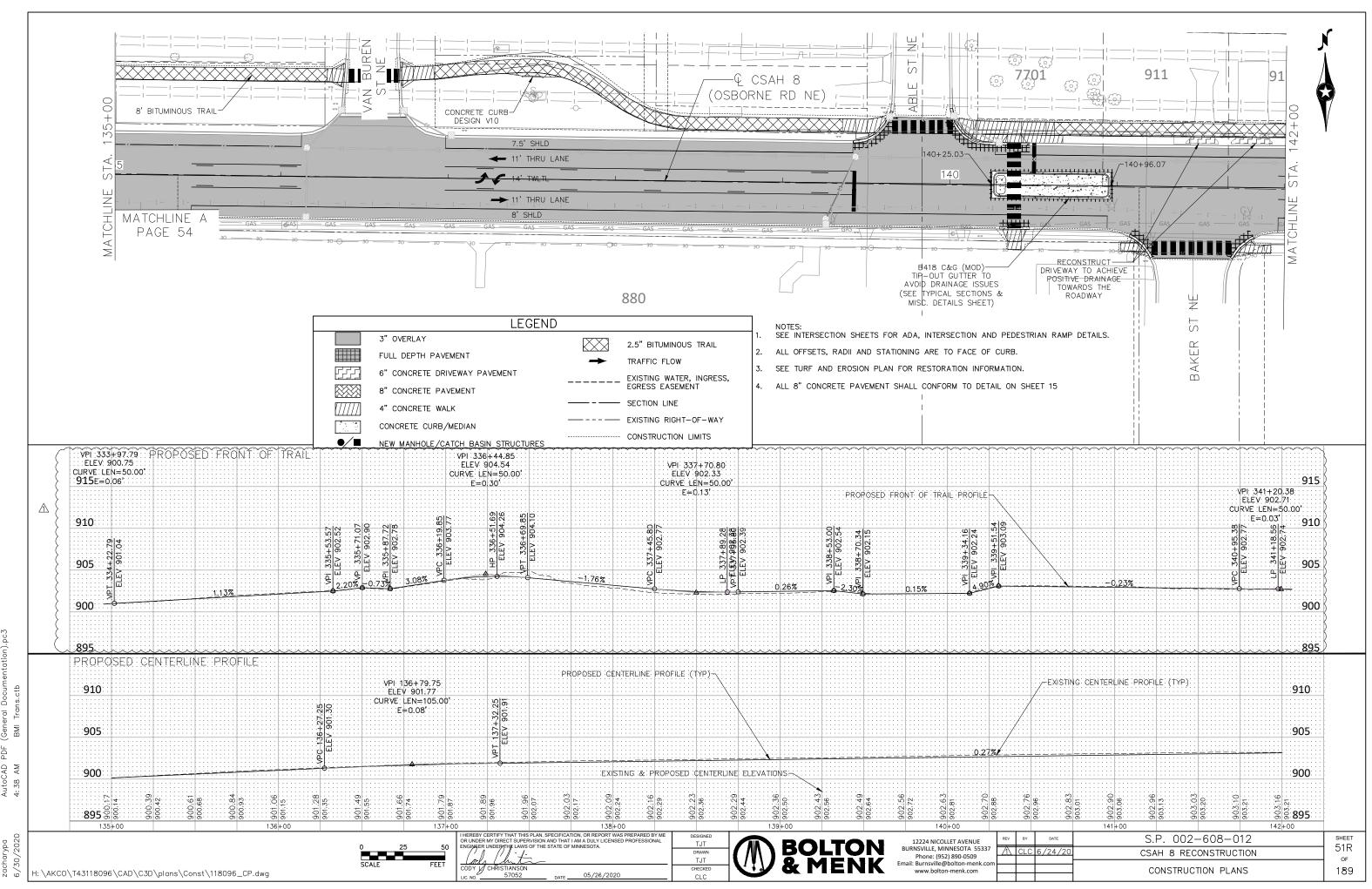

2020 30,

ctb (Gene BMI

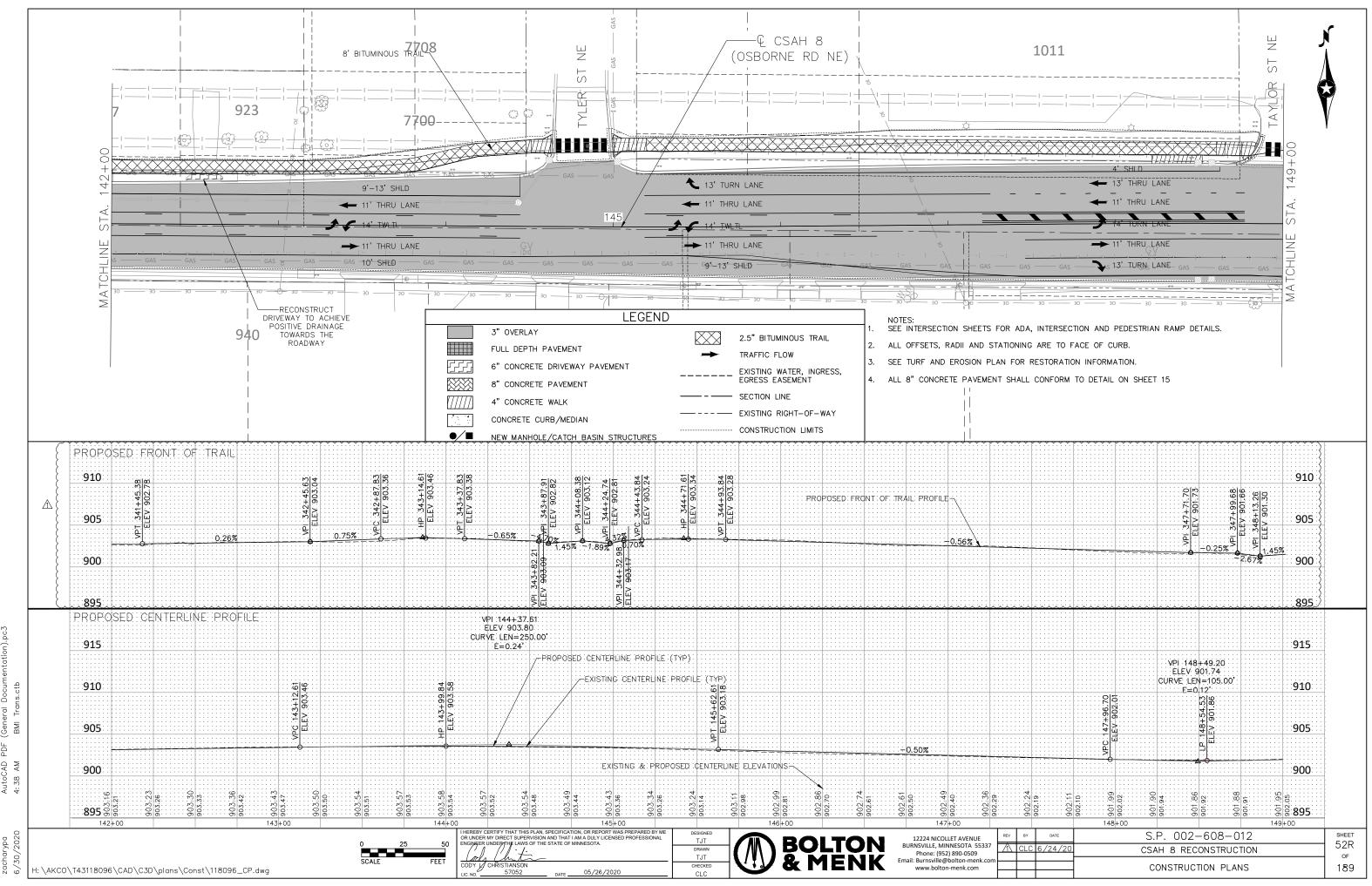
pc3


CAD AutoC/ 4: 38

AutoCAD PDF (General Documentation 4:38 AM BMI Trans.ctb

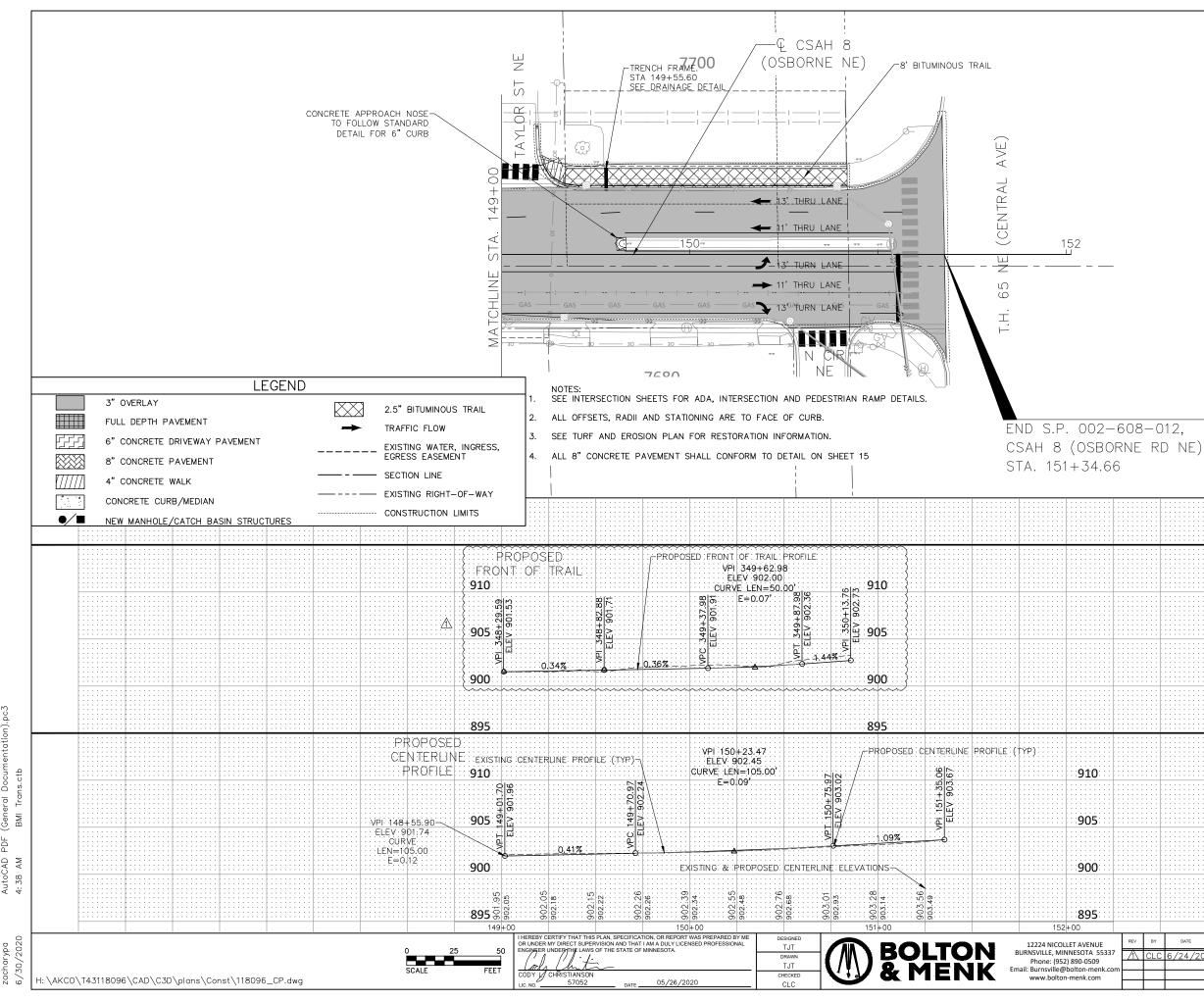

pc3

zacharypa 6/30/2020



ŏ (Gene BMI CAD 38 38 A 4

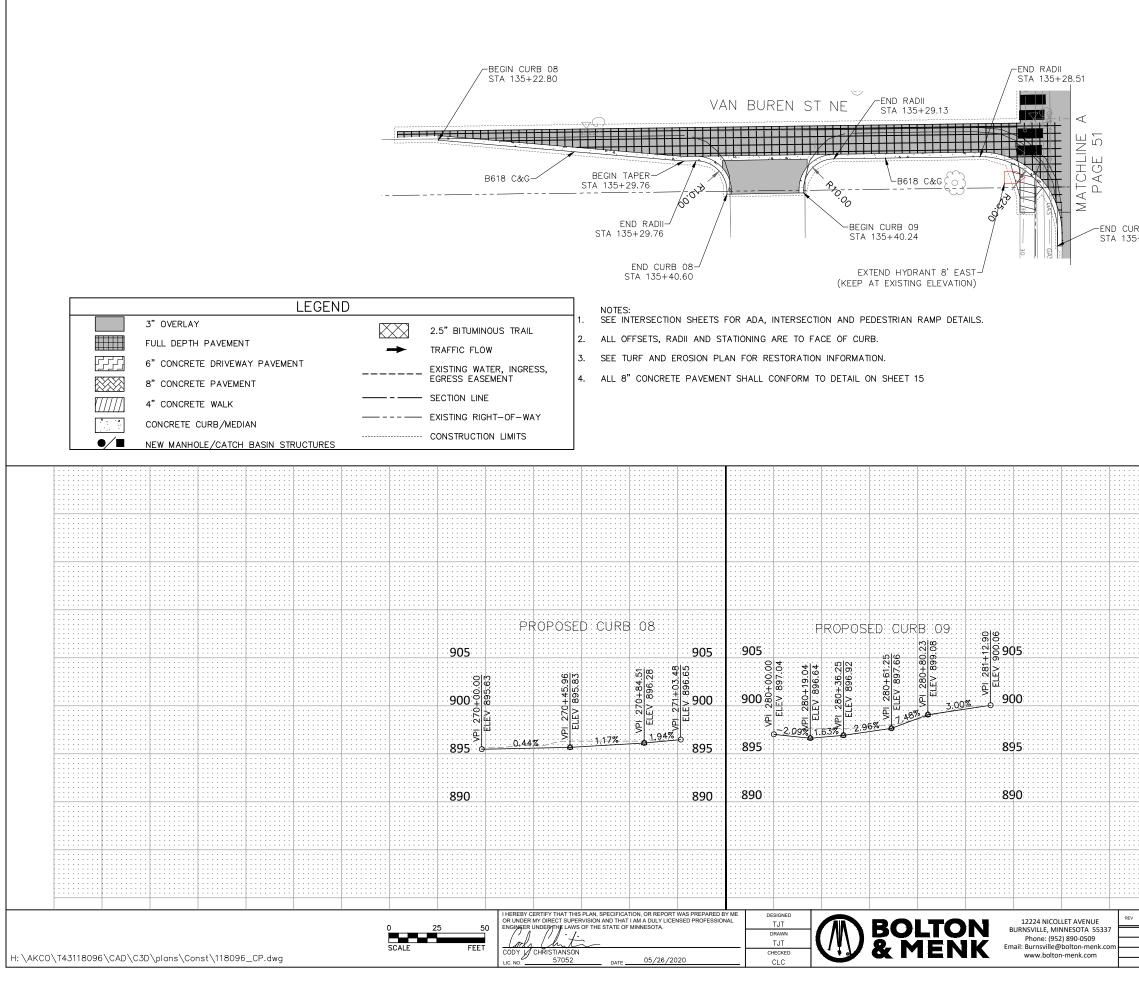
pc3



tion).pc3 ŏ Tra (Gene BMI PDF AutoCAD 4:38 AM

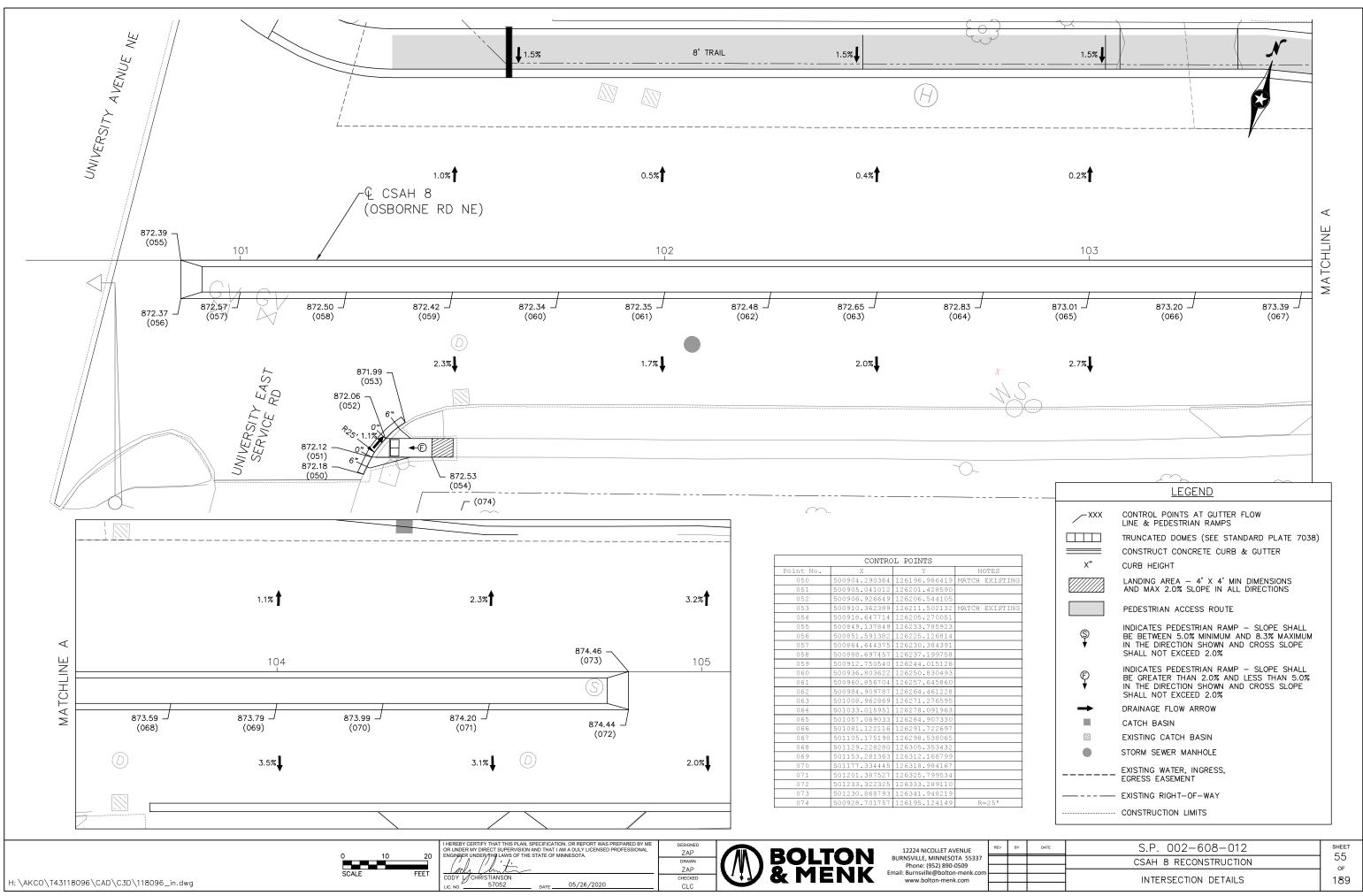
ctb ŏ Ě (Gene BMI AutoCAD 4:38 AM

ура 2020

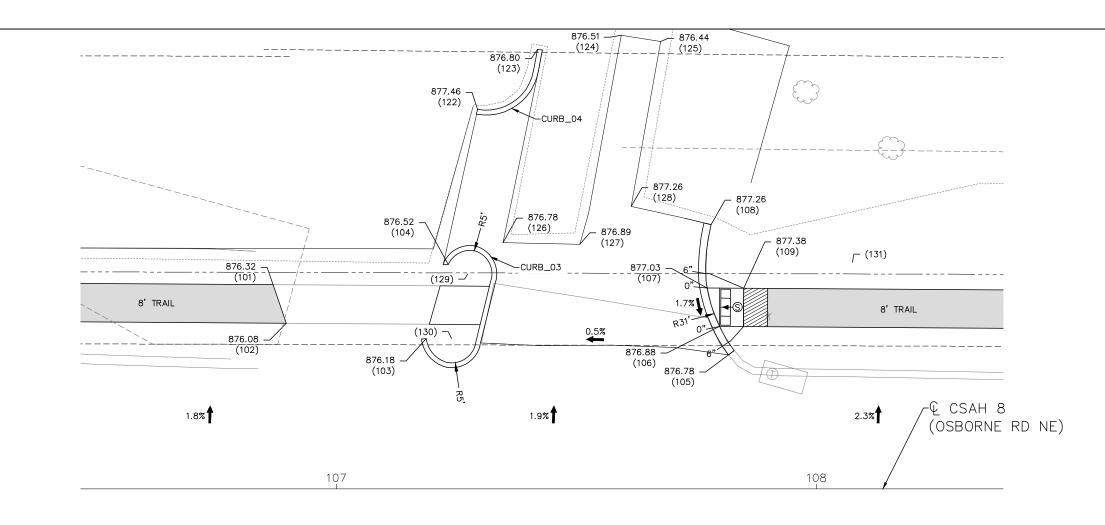


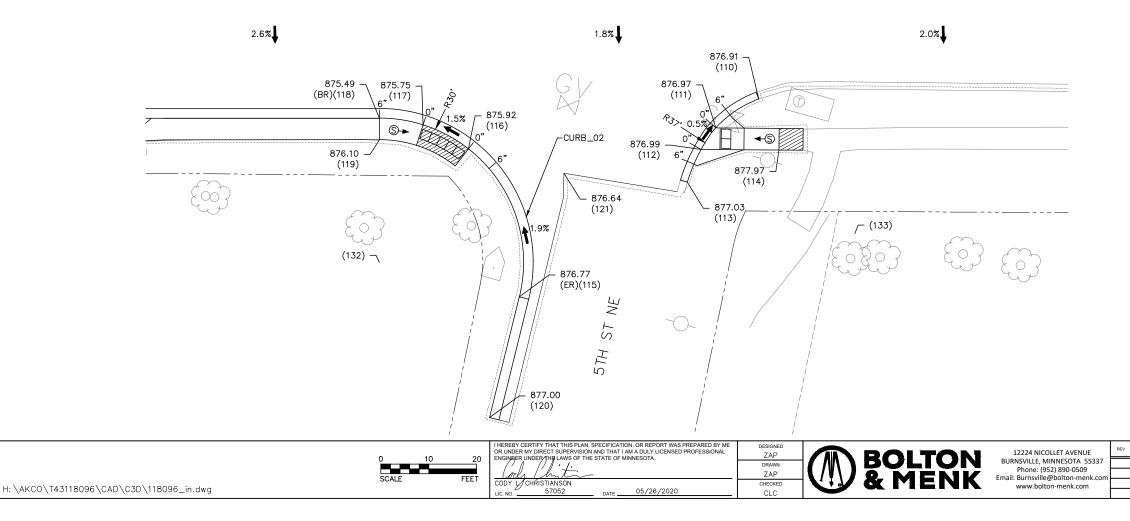
tion).pc3 ctb ŏ Tral (Gene BMI PDF AutoCAD 4:38 AM

ура 2020


∎v By Î\CLC	DATE	S.P. 002-608-012 CSAH 8 RECONSTRUCTION	sheet 53R

taylorts AutoCAD PDF (General Documentation).pc3 6/3/2020 3:44 PM BMI Trans.ctb

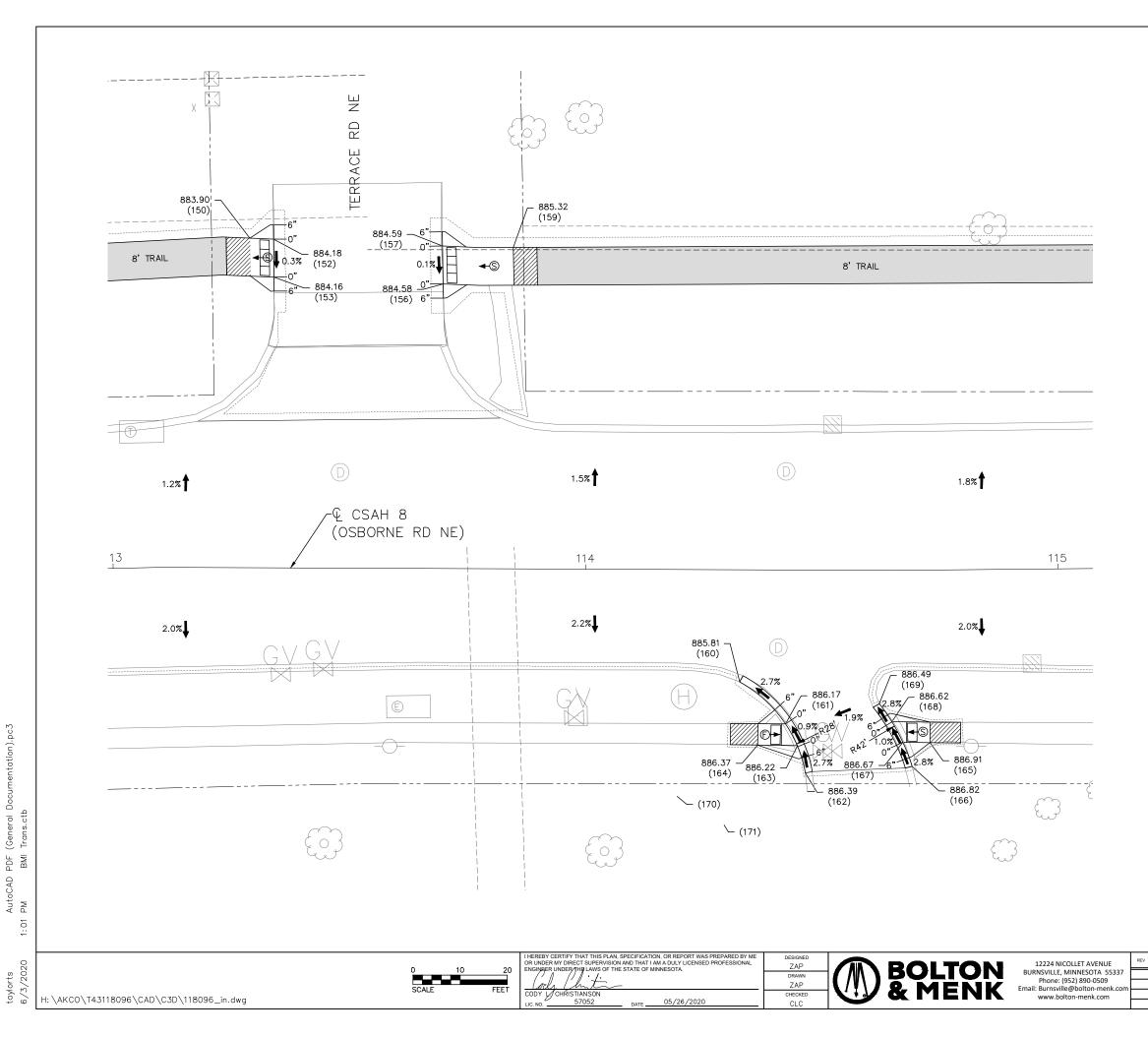

		- 5
JRB 09		
5+57.72		
V BY DATE	S.P. 002-608-012 CSAH 8 RECONSTRUCTION	sheet 54
	CONSTRUCTION PLANS	₀ 189



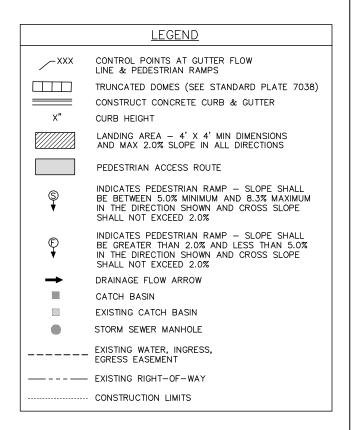
entation).pc3 Doc (General D Trans.ctb PDF BMI OCAD Aut PM 1:01 2020

taylo 6/3/

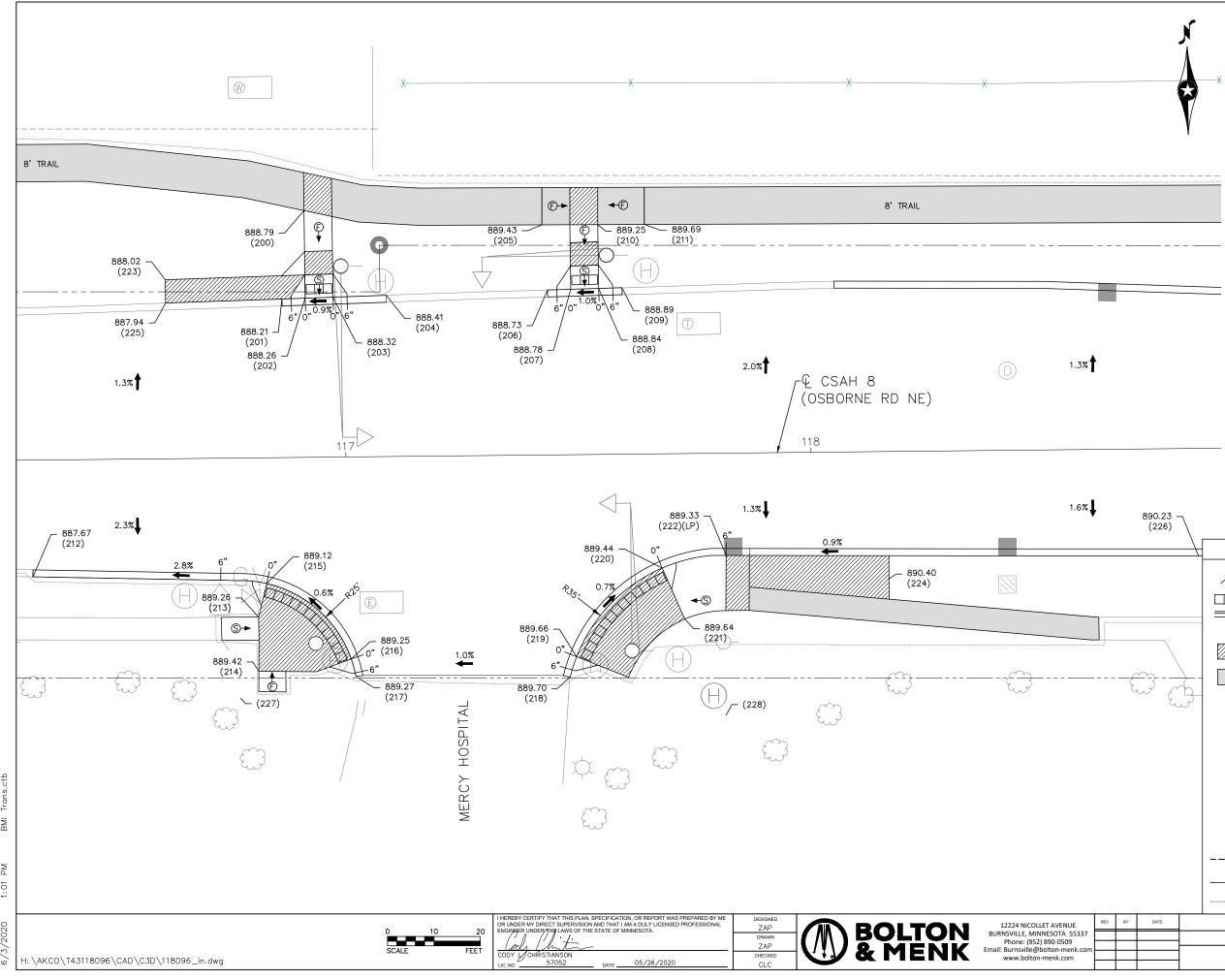
BY	DATE	S.P. 002-608-012	SHEET
		CSAH 8 RECONSTRUCTION	55
		INTERSECTION DETAILS	₀ 189
		INTERSECTION DETAILS	105



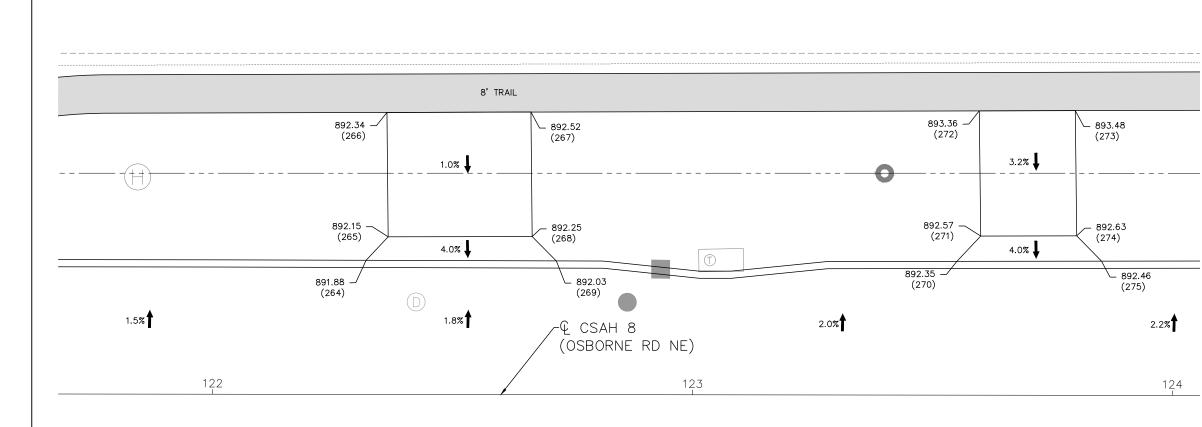
	CONTRO	L POINTS	
Point No.	X	Y	NOTES
101	501415.606316	126438.473454	MATCH EXISTING
102	501420.440814	126431.507493	MATCH EXISTING
103	501449.342000	126436.390000	MATCH EXISTING
104	501449.568786	126452.472101	MATCH EXISTING
105	501511.728620	126451.454430	MATCH EXISTING
106	501507.414163	126455.474562	
107	501502.746992	126462.486632	
108	501499.950000	126475.364000	MATCH EXISTING
109	501510.109165	126464.515411	
110	501519.397000	126393.575000	MATCH EXISTING
111	501512.410215	126385.345491	
112	501510.708294	126380.213426	
113	501509.793000	126372.840000	MATCH EXISTING
114	501526.357681	126384.500679	
115	501482.633975	126340.337052	
116	501464.036634	126367.066375	
117	501453.600295	126369.294515	
118	501444.473137	126368.173219	
119	501445.699903	126363.843664	
120	501483.521344	126314.444493	MATCH EXISTING
121	501484.578833	126367.652969	MATCH EXISTING
122	501446.636663	126485.217918	MATCH EXISTING
123	501455.262575	126500.632625	MATCH EXISTING
124	501471.225175	126508.243299	MATCH EXISTING
125	501479.445338	126509.228181	MATCH EXISTING
126	501459.282359	126459.954857	MATCH EXISTING
127	501474.747488	126463.991586	MATCH EXISTING
128	501482.893189	126474.490509	MATCH EXISTING
129	501454.008476	126451.669118	R=5'
130	501454.465526	126437.798350	R=5'
131	501530.436660	126475.857375	R=31'
132	501452.651578	126339.309520	R=30'
133	501546.288100	126372.041958	R=37'

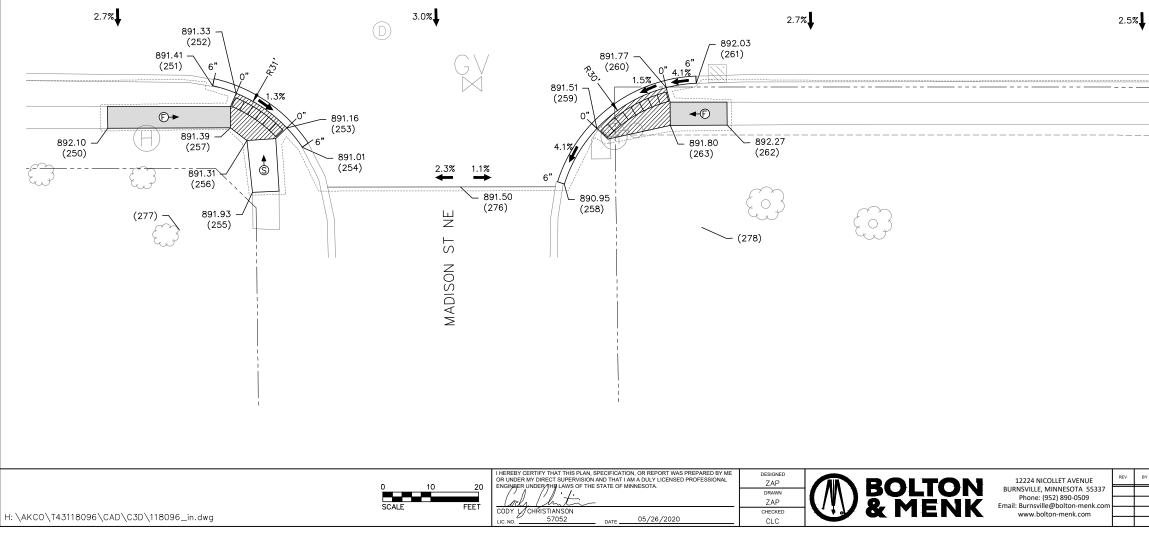

	LEGEND
∕-×××	CONTROL POINTS AT GUTTER FLOW LINE & PEDESTRIAN RAMPS
	TRUNCATED DOMES (SEE STANDARD PLATE 7038)
	CONSTRUCT CONCRETE CURB & GUTTER
Χ"	CURB HEIGHT
	LANDING AREA - 4' X 4' MIN DIMENSIONS AND MAX 2.0% SLOPE IN ALL DIRECTIONS
	PEDESTRIAN ACCESS ROUTE
© ▼	INDICATES PEDESTRIAN RAMP - SLOPE SHALL BE BETWEEN 5.0% MINIMUM AND 8.3% MAXIMUM IN THE DIRECTION SHOWN AND CROSS SLOPE SHALL NOT EXCEED 2.0%
© ▼	INDICATES PEDESTRIAN RAMP - SLOPE SHALL BE GREATER THAN 2.0% AND LESS THAN 5.0% IN THE DIRECTION SHOWN AND CROSS SLOPE SHALL NOT EXCEED 2.0%
→	DRAINAGE FLOW ARROW
	CATCH BASIN
	EXISTING CATCH BASIN
	STORM SEWER MANHOLE
	EXISTING WATER, INGRESS, EGRESS EASEMENT
	EXISTING RIGHT-OF-WAY
	CONSTRUCTION LIMITS

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	56 of
			INTERSECTION DETAILS	189
				100



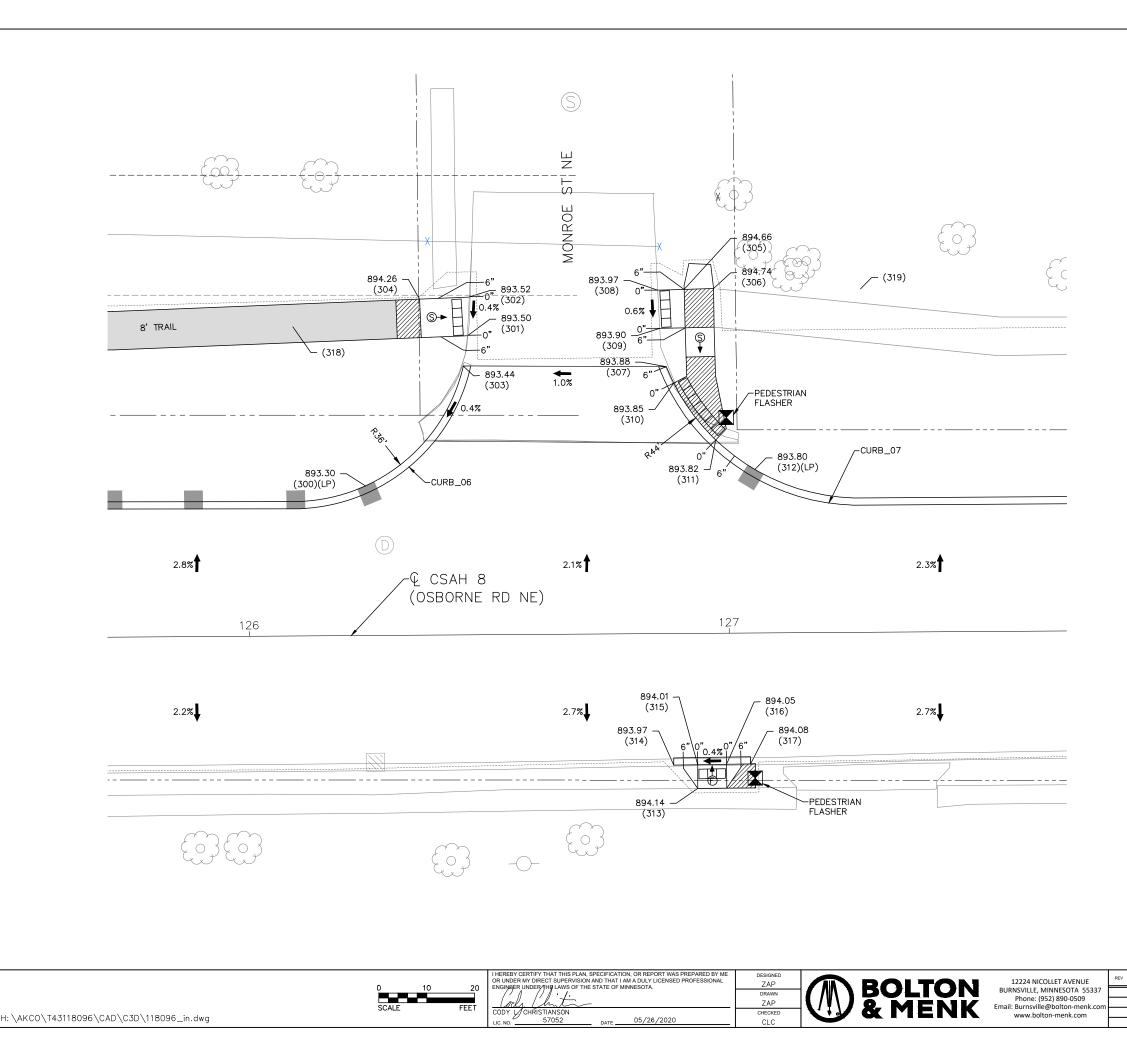
	CONTROL POINTS				
Point No.	X	Y	NOTES		
150	502059.485137	126556.935954			
152	502064.488842	126556.665636	MATCH EXISTING		
153	502064.459066	126548.655328	MATCH EXISTING		
156	502100.266872	126546.719204	MATCH EXISTING		
157	502100.222634	126554.733282	MATCH EXISTING		
159	502115.225599	126554.237469			
160	502161.902000	126461.598000	MATCH EXISTING		
161	502171.498376	126452.593224			
162	502175.570380	126442.148617	MATCH EXISTING		
163	502173.968777	126447.938922			
164	502165.558589	126448.175863			
165	502202.016678	126448.206497			
166	502198.175129	126443.218150	MATCH EXISTING		
167	502196.280082	126448.349146			
168	502194.023270	126452.701629			
169	502191.412000	126456.574000	MATCH EXISTING		
170	502148.368538	126437.559599	R=28'		
171	502158.226381	126431.379201	R=42'		



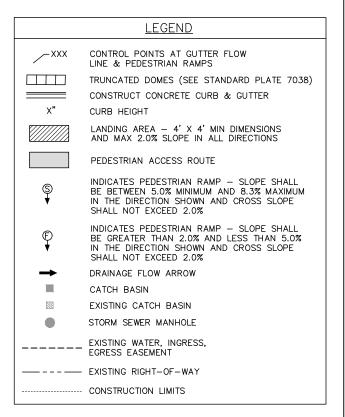

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	57 of
-			INTERSECTION DETAILS	189
				105

entation).pc3 AutoCAD PDF (General Docu 1:01 PM BMI Trans.ctb taylorts 6/3/2020

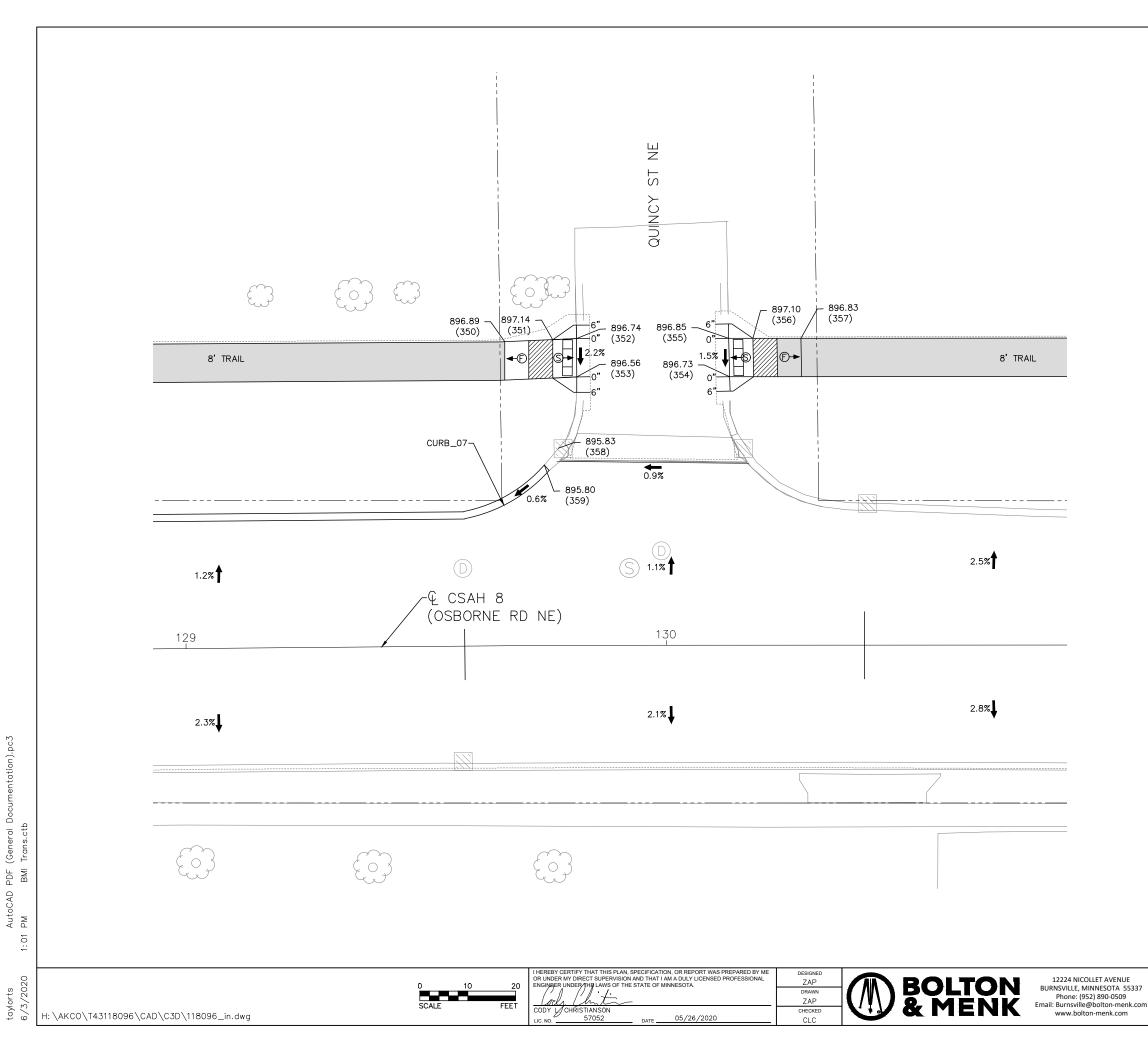
						L POINTS	1	
				Point No 200		Y 126537.017615		DTES
				200	502416.314459	126518.084329		
				202	502421.314000	126518.191507		
				203	502427.314000	126518.320133		
				204	502438.748804 502472.415278	126518.565269 126533.288239	MATCH .	EXISTING
				205	502472.415276	126519.254084	MATCH	EXISTING
				207	502478.415000	126519.351198		
				208	502484.415000	126519.457160		
				209	502489.424733	126519.525260	MATCH	EXISTING
				210	502484.415000 502494.414536	126533.172637 126533.076303		
				211	502361.997000	126459.096000	MATCH	EXISTING
				213	502410.404588	126449.804740		
				214	502410.279655	126438.140579		
				215	502412.224980	126456.980635		
				216	502430.175795	126440.529857		
				217 218	502431.143555 502477.163472	126436.696581 126435.986790		
				210	502477.163472	126440.369138	PAICH .	GAISIING
				220	502497.273295	126459.202518		
				221	502501.978062	126448.162737		
				222	502511.020072	126461.694426		
				223	502391.314000	126522.549526		
				224	502545.943510 502391.314000	126456.185024 126517.541248		
				226	502612.581310			
		890.23 -	7	227	502406.260794	126432.453411	R=	25'
		(226)	\backslash	228	502510.567889	126427.368951	R=	35'
			$ _ _ _$		LEGE	ND		
			<u>_</u>					
				XXX	CONTROL POINTS A		V	
					TRUNCATED DOMES	(SEE STANDAR	D PLATE	- 7038)
			=		CONSTRUCT CONCR	ETE CURB & GI	JTTER	
				X"	CURB HEIGHT			
				777777	LANDING AREA -	4' X 4' MIN DIM	ENSIONS	5
					AND MAX 2.0% SLO			
	-{	<u></u>	<u>}</u> [PEDESTRIAN ACCES	SS ROUTE		
				© ♥	INDICATES PEDESTR BE BETWEEN 5.0% IN THE DIRECTION SHALL NOT EXCEED	MINIMUM AND 8 SHOWN AND CR	3.3% MA	XIMUM
				€ ¥	INDICATES PEDEST BE GREATER THAN IN THE DIRECTION SHALL NOT EXCEED	2.0% AND LESS SHOWN AND CR	S THAN	5.0%
				→	DRAINAGE FLOW AF	ROW		
					CATCH BASIN			
				\square	EXISTING CATCH BA	ASIN		
				•	STORM SEWER MAN	HOLE		
					EXISTING WATER, IN EGRESS EASEMENT	IGRESS,		
			-		EXISTING RIGHT-OF	-WAY		
					CONSTRUCTION LIMI	TS		
v	BY	DATE		S.F	P. 002-608-	012		sheet 58
				CSA	H 8 RECONSTRU	CTION		OF
-				IN	TERSECTION DETA	AILS		189



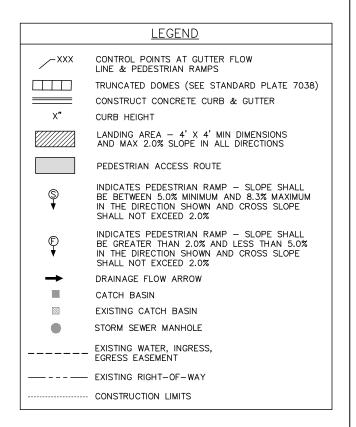
	CONTRO	L POINTS	
Point No.	X	Y	NOTES
250	502913.705768	126438.229228	MATCH EXISTING
251	502935.684214	126446.765114	MATCH EXISTING
252	502940.556474	126445.138902	
253	502950.984500	126437.788500	
254	502954.164378	126433.730418	MATCH EXISTING
255	502943.694096	126424.495611	
256	502942.697568	126435.300231	
257	502939.297408	126437.975387	
258	503008.688228	126425.372377	MATCH EXISTING
259	503015.622779	126436.822042	
260	503030.196602	126445.137681	
261	503036.442000	126445.957000	MATCH EXISTING
262	503042.774279	126437.170431	MATCH EXISTING
263	503030.909283	126437.266328	
264	502961.772638	126504.039719	
265	502966.441553	126508.868171	
266	502966.527349	126534.786978	
267	502996.525599	126534.462949	
268	502996.439803	126508.544142	
269	503001.439752	126503.373345	
270	503084.848546	126502.186010	
271	503089.860633	126507.369359	
272	503089.946977	126533.453850	
273	503109.945810	126533.237831	
274	503109.859466	126507.153340	
275	503114.951309	126501.817266	
276	502986.963325	126424.951662	MATCH EXISTING
277	502928.394349	126416.812149	R=25'
278	503037.205299	126415.925664	R=35'

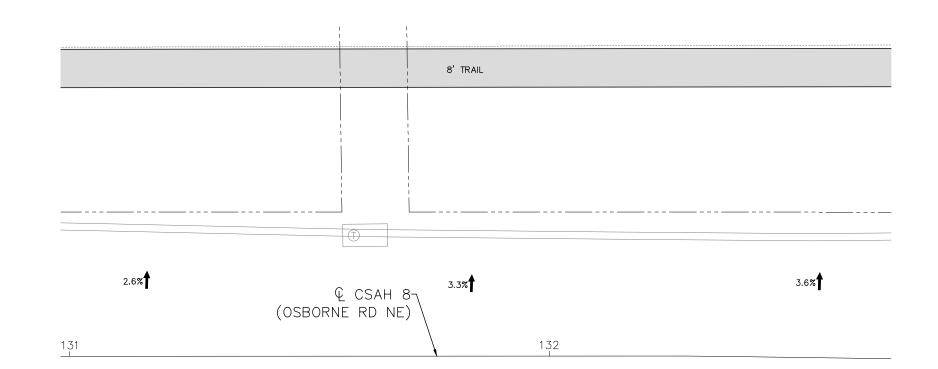

		LEGEND
		CONTROL POINTS AT GUTTER FLOW LINE & PEDESTRIAN RAMPS
_		TRUNCATED DOMES (SEE STANDARD PLATE 7038)
		CONSTRUCT CONCRETE CURB & GUTTER
	×"	CURB HEIGHT
		LANDING AREA – 4' X 4' MIN DIMENSIONS AND MAX 2.0% SLOPE IN ALL DIRECTIONS
		PEDESTRIAN ACCESS ROUTE
	S ▼	INDICATES PEDESTRIAN RAMP — SLOPE SHALL BE BETWEEN 5.0% MINIMUM AND 8.3% MAXIMUM IN THE DIRECTION SHOWN AND CROSS SLOPE SHALL NOT EXCEED 2.0%
	₽ ¥	INDICATES PEDESTRIAN RAMP – SLOPE SHALL BE GREATER THAN 2.0% AND LESS THAN 5.0% IN THE DIRECTION SHOWN AND CROSS SLOPE SHALL NOT EXCEED 2.0%
	→	DRAINAGE FLOW ARROW
	=	CATCH BASIN
		EXISTING CATCH BASIN
	•	STORM SEWER MANHOLE
		EXISTING WATER, INGRESS, EGRESS EASEMENT
		EXISTING RIGHT-OF-WAY
		CONSTRUCTION LIMITS

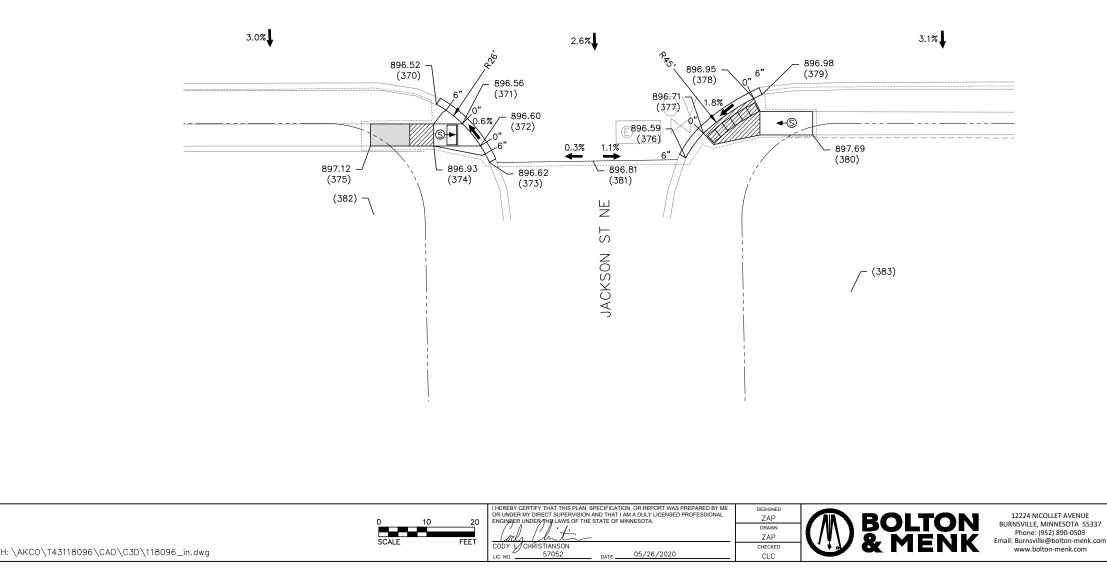
v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	59
			INTERSECTION DETAILS	₀ 189
				100



	CONTROL POINTS				
Point No.	X	Y	NOTES		
300	503354.065039	126502.139874			
301	503375.835063	126533.253082	MATCH EXISTING		
302	503376.340706	126541.283910	MATCH EXISTING		
303	503374.740280	126526.844000	MATCH EXISTING		
304	503365.861618	126540.888428			
305	503420.987077	126542.201093			
306	503427.110279	126542.295351	MATCH EXISTING		
307	503417.055313	126526.137000	MATCH EXISTING		
308	503415.488066	126542.116444	MATCH EXISTING		
309	503415.795426	126534.151423	MATCH EXISTING		
310	503418.542017	126522.713902			
311	503427.131260	126510.746185			
312	503435.201072	126504.473240			
313	503422.447749	126438.179230			
314	503417.495138	126443.098600	MATCH EXISTING		
315	503422.479652	126443.118641			
316	503428.486005	126443.142790			
317	503433.495546	126443.162932	MATCH EXISTING		
318	503339.343648	126535.465183	R=36'		
319	503457.713050	126541.760880	R=44 '		

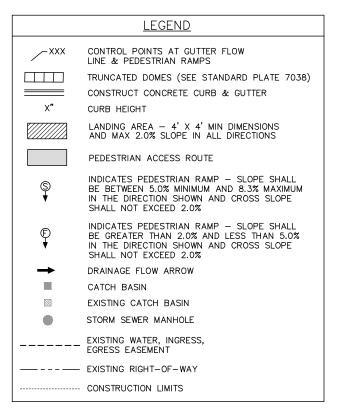

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	60 0F
_			INTERSECTION DETAILS	189
				100

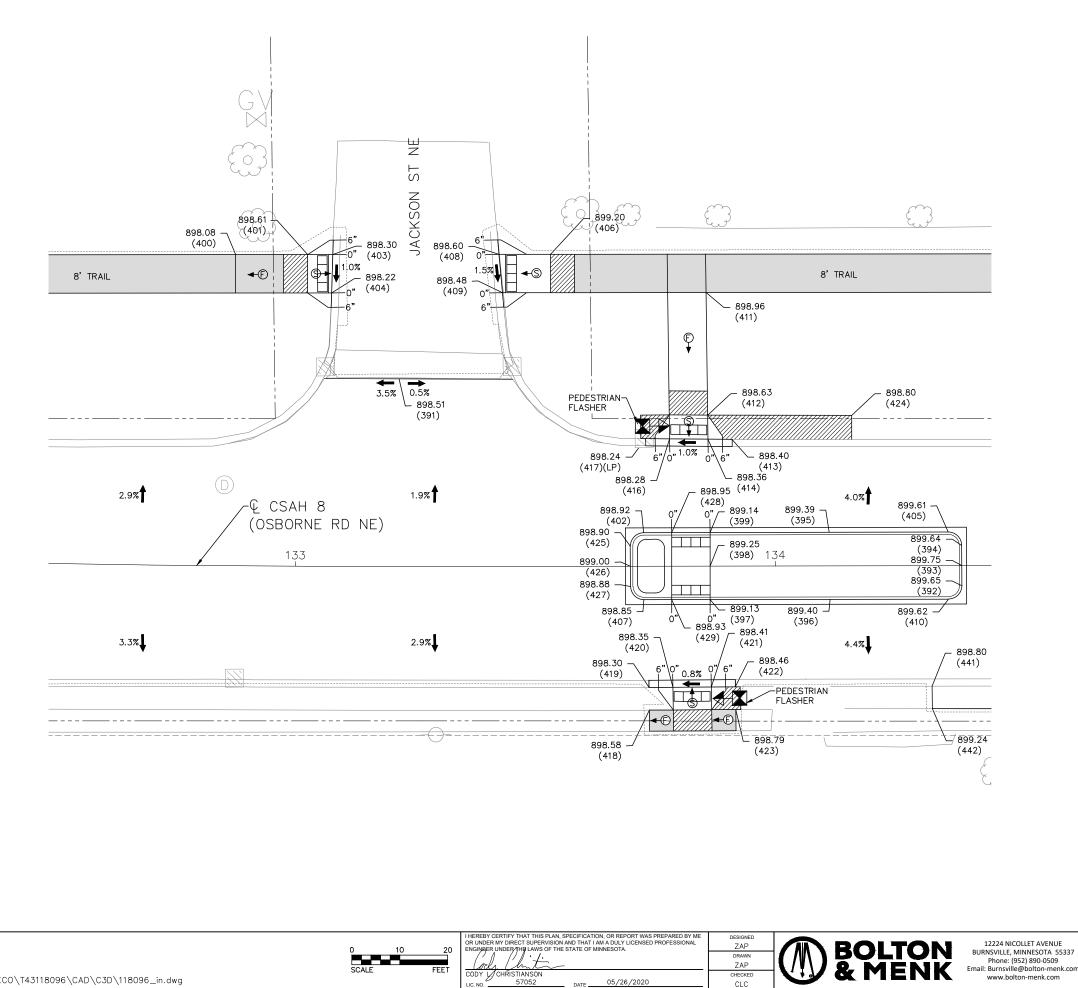

entation).pc3 Doc eral D s.ctb (Gene Trans PDF BMI AutoCAD F PM 1:01 rts '2020



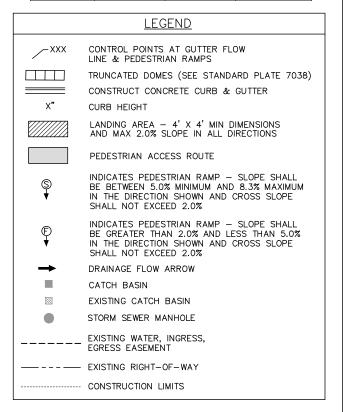
CONTROL POINTS				
Point No.	X	Y	NOTES	
350	503696.636982	126532.269690		
351	503706.651864	126532.583253		
352	503711.583331	126532.737655	MATCH EXISTING	
353	503711.518941	126524.737841	MATCH EXISTING	
354	503743.390157	126524.344556	MATCH EXISTING	
355	503743.315213	126532.346090	MATCH EXISTING	
356	503748.316010	126532.284381		
357	503758.317605	126532.160964		
358	503707.514386	126509.936496	MATCH EXISTING	
359	503704.537000	126506.467000	MATCH EXISTING	

	REV	BY	DATE	S.P. 002-608-012	SHEET
				CSAH 8 RECONSTRUCTION	61 of
n				INTERSECTION DETAILS	189
					105

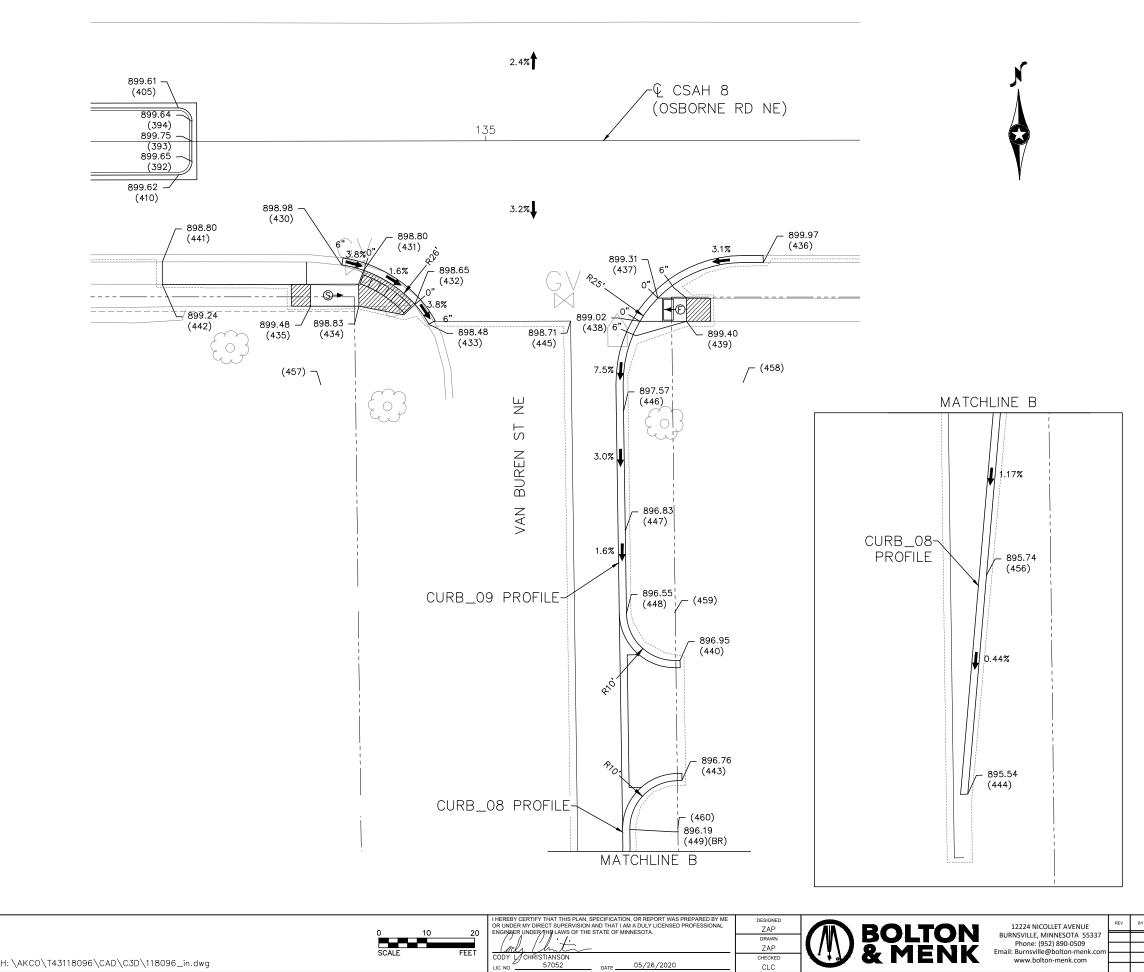



taylorts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:01 PM BMI Trans.ctb

CONTROL POINTS				
Point No.	X	Y	NOTES	
370	503879.880746	126437.660255	MATCH EXISTING	
371	503885.205495	126433.537607		
372	503888.910939	126428.873017		
373	503890.731081	126425.413842	MATCH EXISTING	
374	503879.191335	126429.000175		
375	503865.975043	126429.173078	MATCH EXISTING	
376	503931.686000	126425.824000	MATCH EXISTING	
377	503935.457973	126430.891183		
378	503945.968961	126438.023687		
379	503947.733000	126438.834000	MATCH EXISTING	
380	503958.186719	126430.256032	MATCH EXISTING	
381	503912.352362	126425.403462	MATCH EXISTING	
382	503866.492872	126414.868672	R=26'	
383	503965.684662	126397.428219	R=45'	

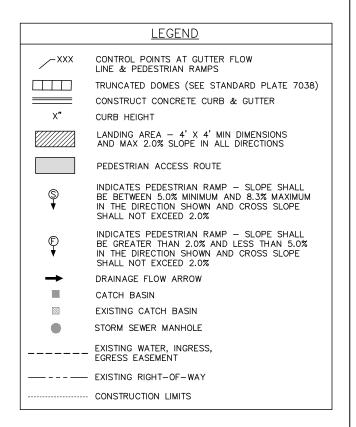


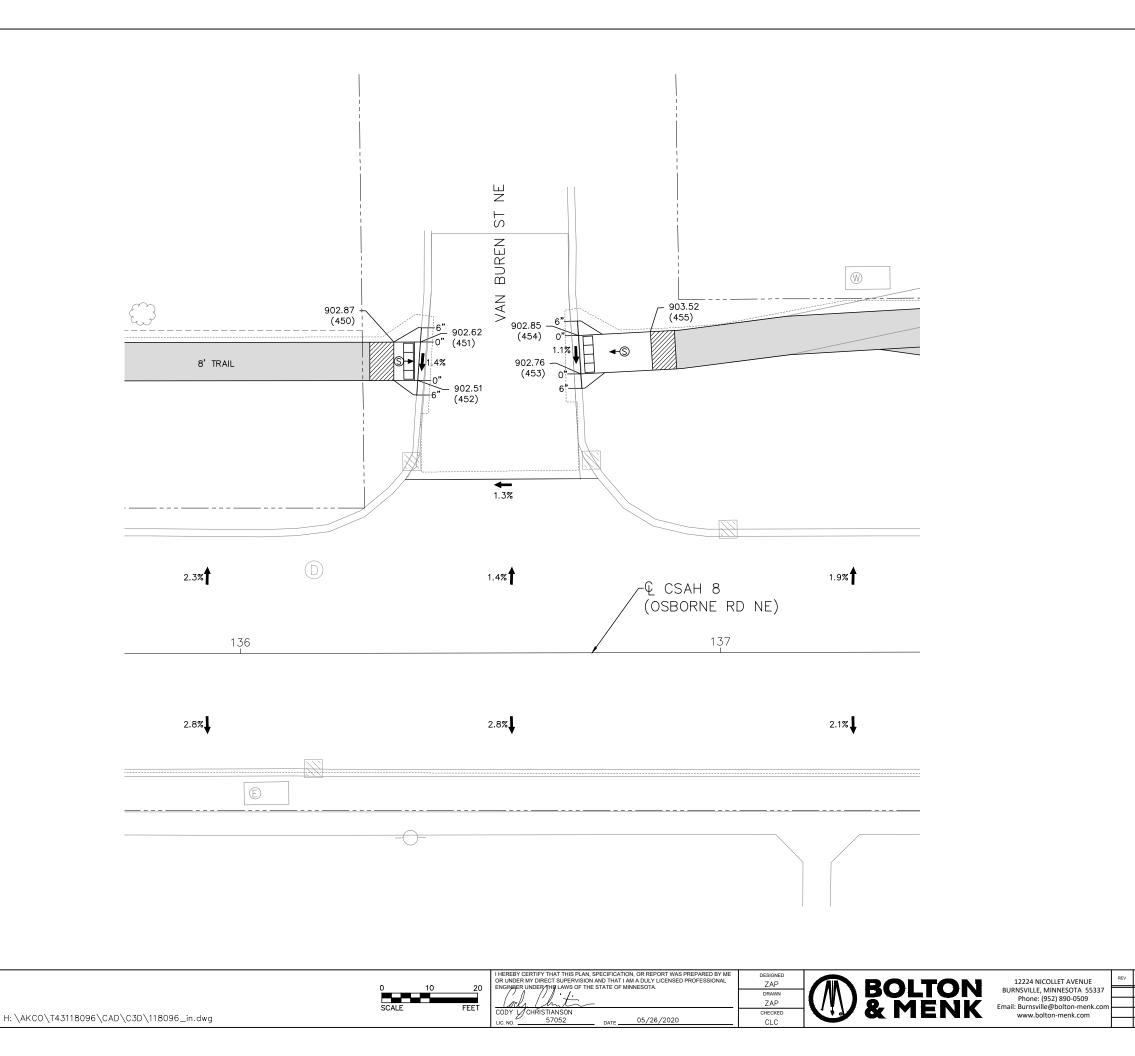
	REV	BY	DATE	S.P. 002-608-012	SHEET
				CSAH 8 RECONSTRUCTION	62 0F
n				INTERSECTION DETAILS	189



taylor 6/3/ H:\AKCO\T43118096\CAD\C3D\118096_in.dwg

	CONTRO	L POINTS	
Point No.	X	Y	NOTES
391	504051.470926	126502.621365	MATCH EXISTING
392	504168.106836	126457.944658	
393	504168.155148	126462.140380	
394	504168.203518	126466.341101	
395	504140.627104	126469.457821	
396	504140.627104	126455.461893	
397	504115.626643	126455.755529	
398	504115.721886	126462.744133	
399	504115.817276	126469.743499	
400	504017.768434	126528.959392	
401	504032.767292	126528.774309	
402	504101.997137	126469.902634	
403	504038.024229	126528.709440	MATCH EXISTING
404	504037.668546	126520.713220	MATCH EXISTING
405	504165.436931	126469.172143	
406	504083.364243	126528.149953	
407	504101.835999	126455.908561	
408	504072.641412	126528.282270	MATCH EXISTING
409	504073.263578	126520.273984	MATCH EXISTING
410	504165.275794	126455.178071	
411	504115.668263	126519.747036	
412	504115.668263	126494.201194	
413	504120.668263	126489.080292	MATCH EXISTING
414	504115.666148	126489.135346	
416	504107.668263	126489.367504	
417	504102.668263	126489.472131	MATCH EXISTING
418	504102.668263	126432.911125	MATCH EXISTING
419	504102.668961	126437.673074	MATCH EXISTING
420	504107.668417	126437.599147	
421	504115.668263	126437.533306	
422	504120.668351	126437.505706	MATCH EXISTING
423	504120.668263	126432.787898	MATCH EXISTING
424	504145.646972	126493.765424	
425	504099.166095	126467.136047	
426	504099.117725	126462.935325	
427	504099.069412	126458.739603	
428	504107.817599	126469.835613	
429	504107.627024	126455.841879	

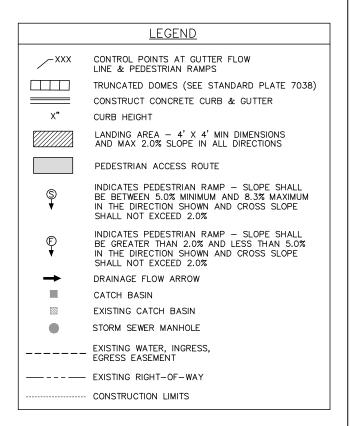

	REV	BY	DATE	S.P. 002-608-012	SHEET
				CSAH 8 RECONSTRUCTION	63 of
۱				INTERSECTION DETAILS	189
					100


orts AutoCAD PDF (General Documentation).pc3 /2020 1:01 PM BMI Trans.ctb

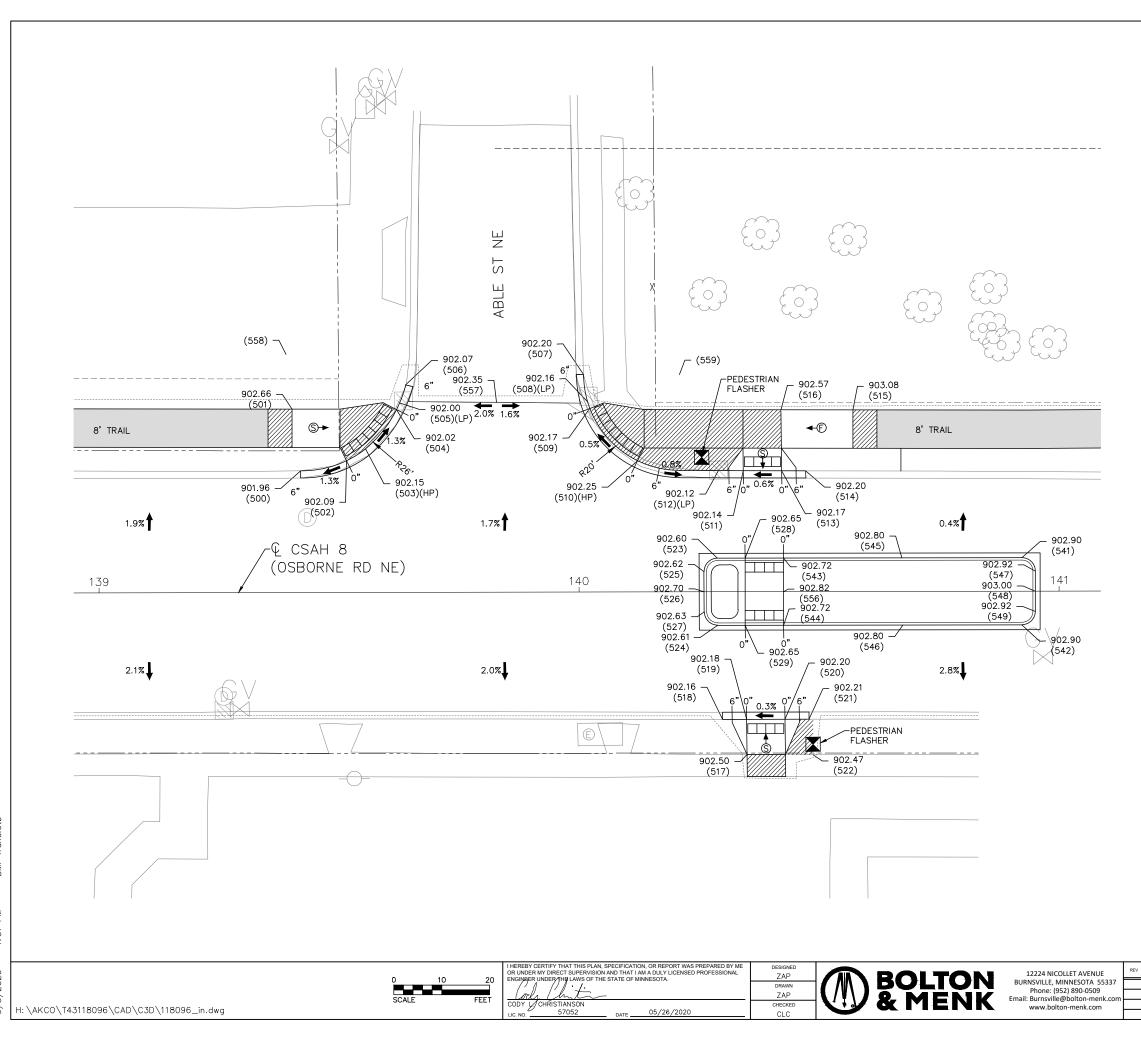
taylor 6/3/ E

	CONTRO	L POINTS	
Point No.	X	Y	NOTES
430	504199.030000	126435.968000	MATCH EXISTING
431	504203.550719	126434.780342	
432	504214.128514	126427.562137	
433	504216.967395	126423.391219	MATCH EXISTING
434	504202.440893	126427.348889	
435	504192.441671	126427.473646	
436	504286.778000	126435.313000	MATCH EXISTING
437	504264.737068	126428.195232	
438	504260.941515	126423.408649	
439	504270.634939	126423.284972	
440	504268.349516	126352.635234	MATCH EXISTING
441	504161.662372	126437.112225	MATCH EXISTING
442	504161.608161	126432.404252	MATCH EXISTING
443	504268.413739	126327.635234	MATCH EXISTING
444	504249.533640	126233.609631	MATCH EXISTING
445	504246.517379	126423.660098	MATCH EXISTING
446	504257.289275	126404.837995	
447	504257.324979	126379.821059	
448	504257.349526	126362.620962	
449	504257.413749	126317.620962	
456	504254.026920	126279.199484	
457	504194.361282	126411.056246	R=26'
458	504282.281384	126410.385208	R=25'
459	504267.349516	126362.635234	R=10'
460	504267.413739	126317.635234	R=10'

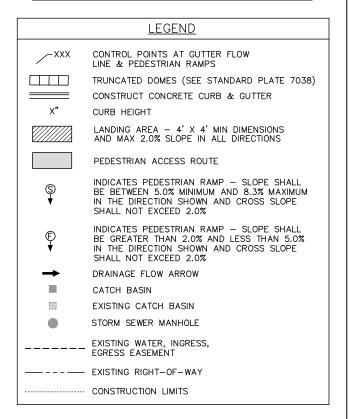
'	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	64
_			INTERSECTION DETAILS	₀ 189
			INTERSECTION DETRIES	103



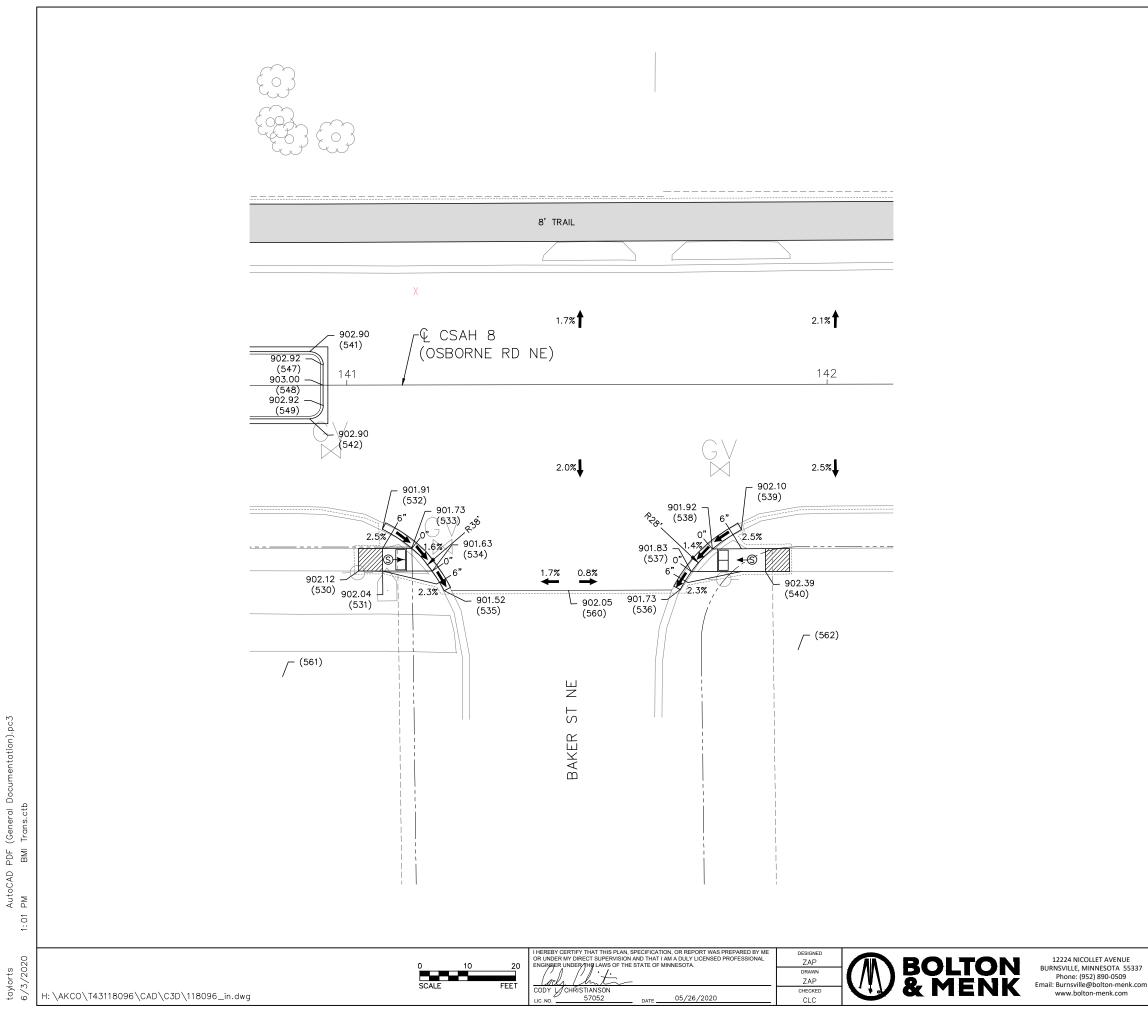
entation).pc3 Doc (General D Trans.ctb PDF BMI AutoCAD F PM 1:01 rts ⁄2020


taylor 6/3/2

	CONTROL POINTS			
Point No.	X	Y	NOTES	
450	504362.119280	126524.710171		
451	504367.693799	126524.643258	MATCH EXISTING	
452	504367.021880	126516.649065	MATCH EXISTING	
453	504401.003005	126517.574300	MATCH EXISTING	
454	504400.598192	126525.564614	MATCH EXISTING	
455	504415.587972	126526.146075		



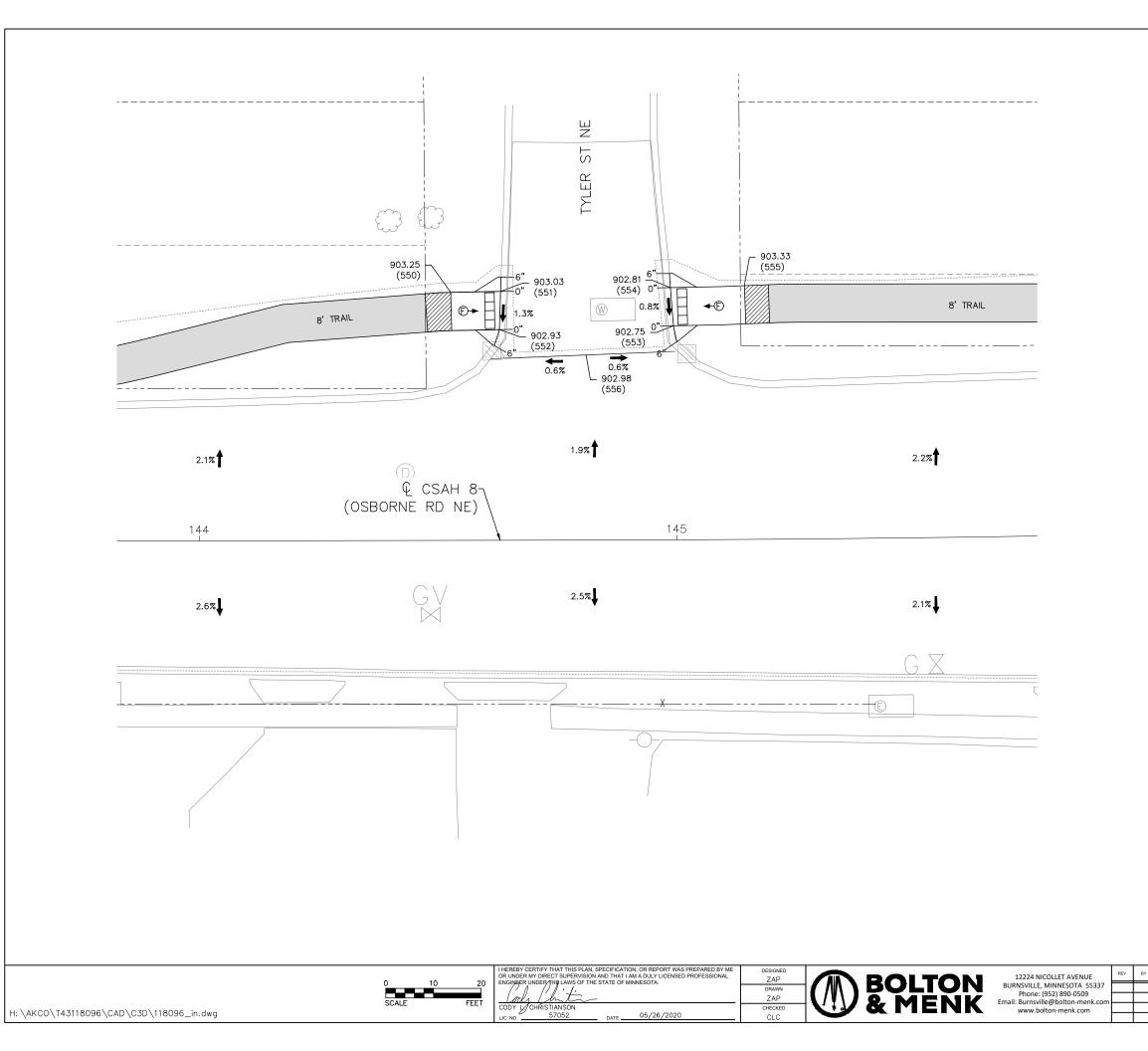
v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	65 of
_			INTERSECTION DETAILS	189
				100



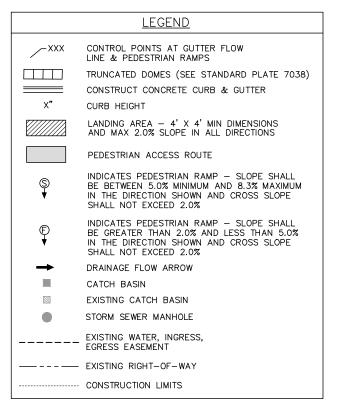
	CONTRO	L POINTS	
Point No.	X	Y	NOTES
500	504671.688000	126481.715000	MATCH EXISTING
501	504670.075981	126494.589874	
502	504681.272836	126483.700058	
503	504685.264000	126486.118000	
504	504691.805606	126494.220584	
505	504692.461484	126495.592837	
506	504693.779734	126499.328592	MATCH EXISTING
507	504730.833000	126501.040000	MATCH EXISTING
508	504731.594844	126495.386844	
509	504732.030010	126493.888242	
510	504741.867278	126482.812472	
511	504763.889459	126480.487958	
512	504758.697728	126480.558950	
513	504771.888586	126480.369396	
514	504776.887991	126480.291641	MATCH EXISTING
515	504786.889459	126492.875832	
516	504771.889459	126493.095932	
517	504763.889459	126421.368391	MATCH EXISTING
518	504758.889884	126428.769755	MATCH EXISTING
519	504763.889459	126428.704556	
520	504771.888874	126428.610099	
521	504776.888449	126428.544914	MATCH EXISTING
522	504777.628511	126421.164341	MATCH EXISTING
523	504758.233041	126462.346454	
524	504758.071903	126448.352381	
525	504755.401999	126459.579867	
526	504755.353626	126455.378961	
527	504755.305316	126451.183423	
528	504764.037790	126462.279614	
529	504763.848118	126448.285870	
543	504772.037467	126462.187500	
544	504771.847714	126448.193757	
545	504796.679706	126461.903752	
546	504796.679706	126447.907824	
547	504824.439422	126458.784921	
548	504824.378043	126454.589888	
549	504824.342739	126450.388478	
556	504771.942075	126455.187950	
557	504712.681591	126495.407253	MATCH EXISTING
558	504668.930535	126505.996759	R=26'
559	504750.838843	126500.687343	R=20'



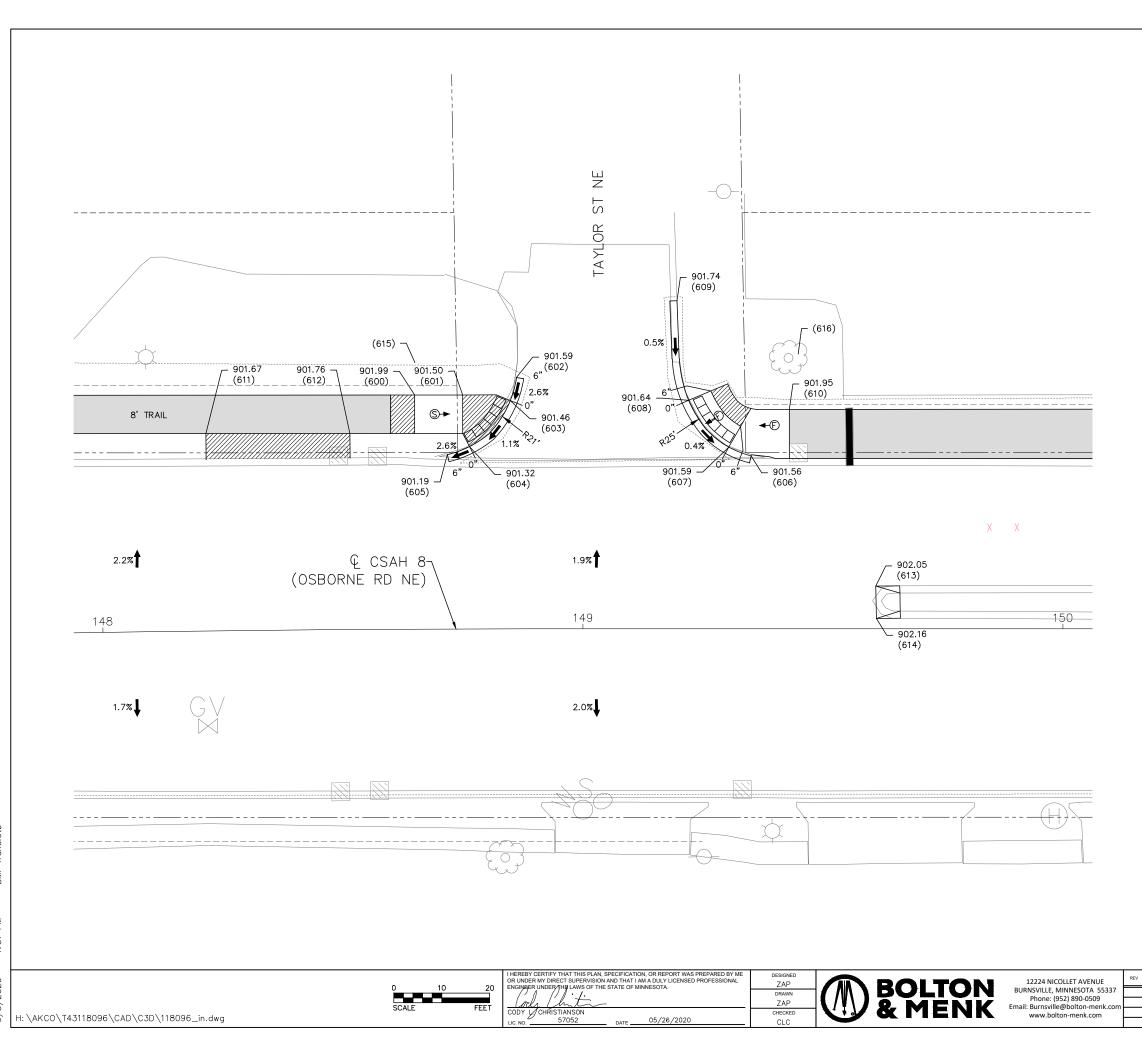
v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	66 of
_			INTERSECTION DETAILS	189
				100



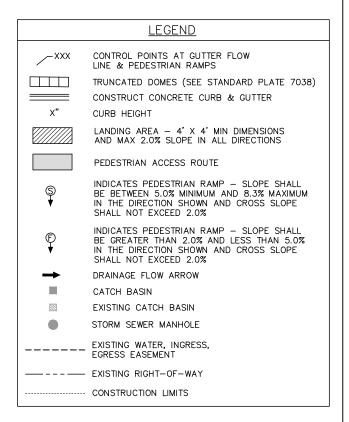
	CONTRO	L POINTS	
Point No.	X	Y	NOTES
530	504831.248121	126415.775818	MATCH EXISTING
531	504836.247557	126415.700712	
532	504836.354334	126424.384784	MATCH EXISTING
533	504842.378756	126420.342601	
534	504846.587439	126415.545379	
535	504849.043235	126411.427932	MATCH EXISTING
536	504898.182583	126411.014743	MATCH EXISTING
537	504900.538236	126414.725155	
538	504904.985952	126419.379991	
539	504911.067508	126423.364222	MATCH EXISTING
540	504915.987483	126414.533081	
541	504821.672835	126461.615963	
542	504821.511697	126447.621891	
560	504874.945344	126411.157659	MATCH EXISTING
561	504815.149284	126394.003423	R=38'
562	504922.542882	126398.151944	R=28'

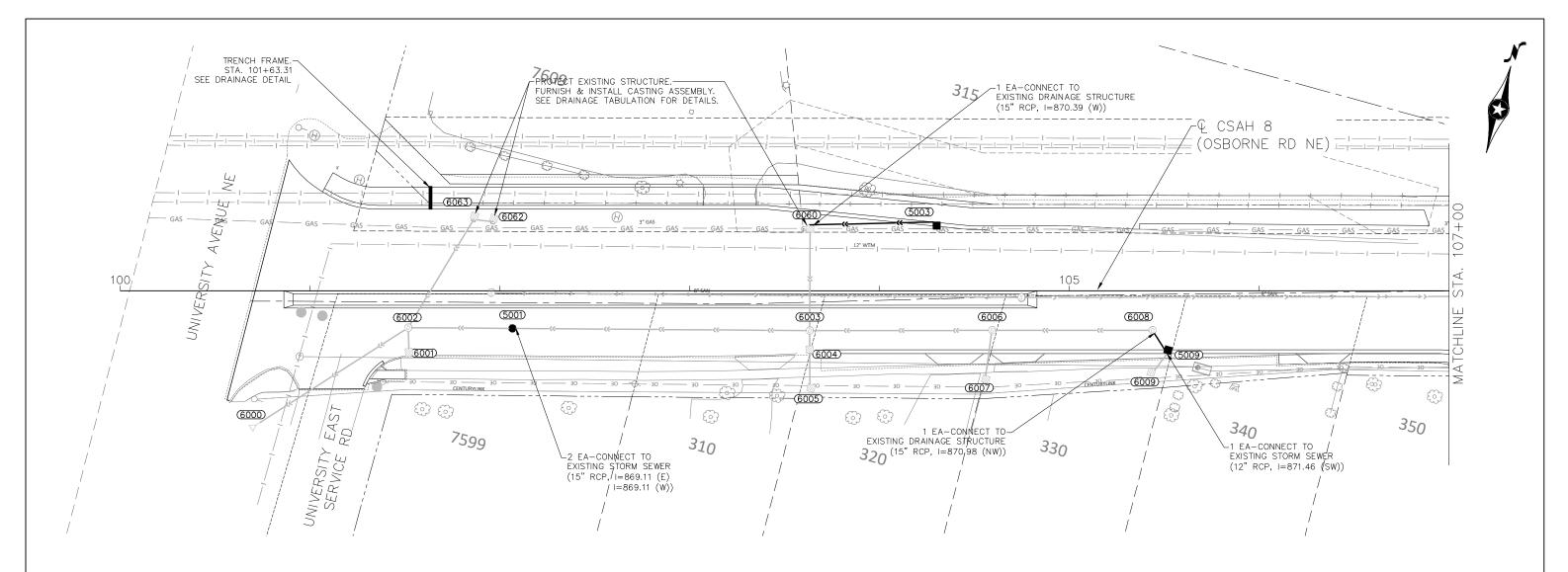


	REV	BY	DATE	S.P. 002-608-012	SHEET
				CSAH 8 RECONSTRUCTION	67 0F
n				INTERSECTION DETAILS	189



CONTROL POINTS			
Point No.	X	Y	NOTES
550	505182.645398	126502.360433	
551	505193.100120	126502.448416	MATCH EXISTING
552	505192.707691	126494.444830	MATCH EXISTING
553	505229.211059	126494.752026	MATCH EXISTING
554	505228.664504	126502.747710	MATCH EXISTING
555	505244.144468	126502.958181	
556	505210.797000	126488.863000	MATCH EXISTING


v	BY	DATE	S.P. 002-608-012			
			CSAH 8 RECONSTRUCTION	68 of		
			INTERSECTION DETAILS	189		
				100		


taylorts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:01 PM BMI Trans.ctb

CONTROL POINTS							
Point No.	X	Y	NOTES				
600	505594.875202	126498.819254					
601	505604.874390	126498.691825					
602	505616.130872	126502.183245	MATCH EXISTING				
603	505614.787918	126497.435764					
604	505606.142584	126487.969412					
605	505601.539096	126486.336833	MATCH EXISTING				
606	505664.821020	126485.188784	MATCH EXISTING				
607	505660.158998	126487.092399					
608	505651.929719	126496.946435					
609	505649.780000	126517.775000	MATCH EXISTING				
610	505672.909852	126494.800825					
611	505551.293110	126491.374008					
612	505581.292311	126490.991703					
613	505690.414784	126457.752023					
614	505690.432825	126450.996813					
615	505595.010246	126505.594105	R=21'				
616	505674.878324	126506.338656	R=25'				

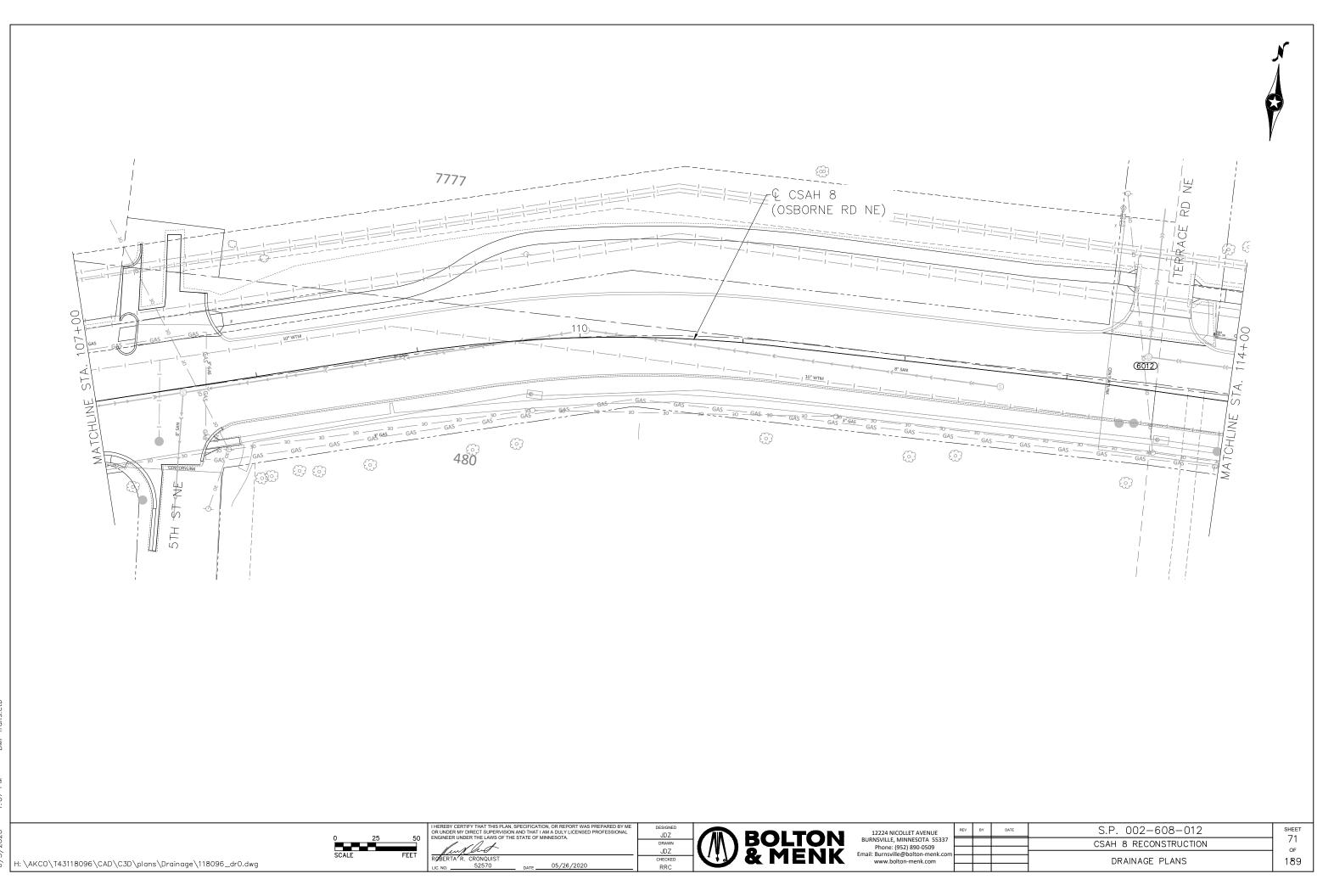
/	BY	DATE	S.P. 002-608-012			
			CSAH 8 RECONSTRUCTION	69 OF		
			INTERSECTION DETAILS	189		
				100		

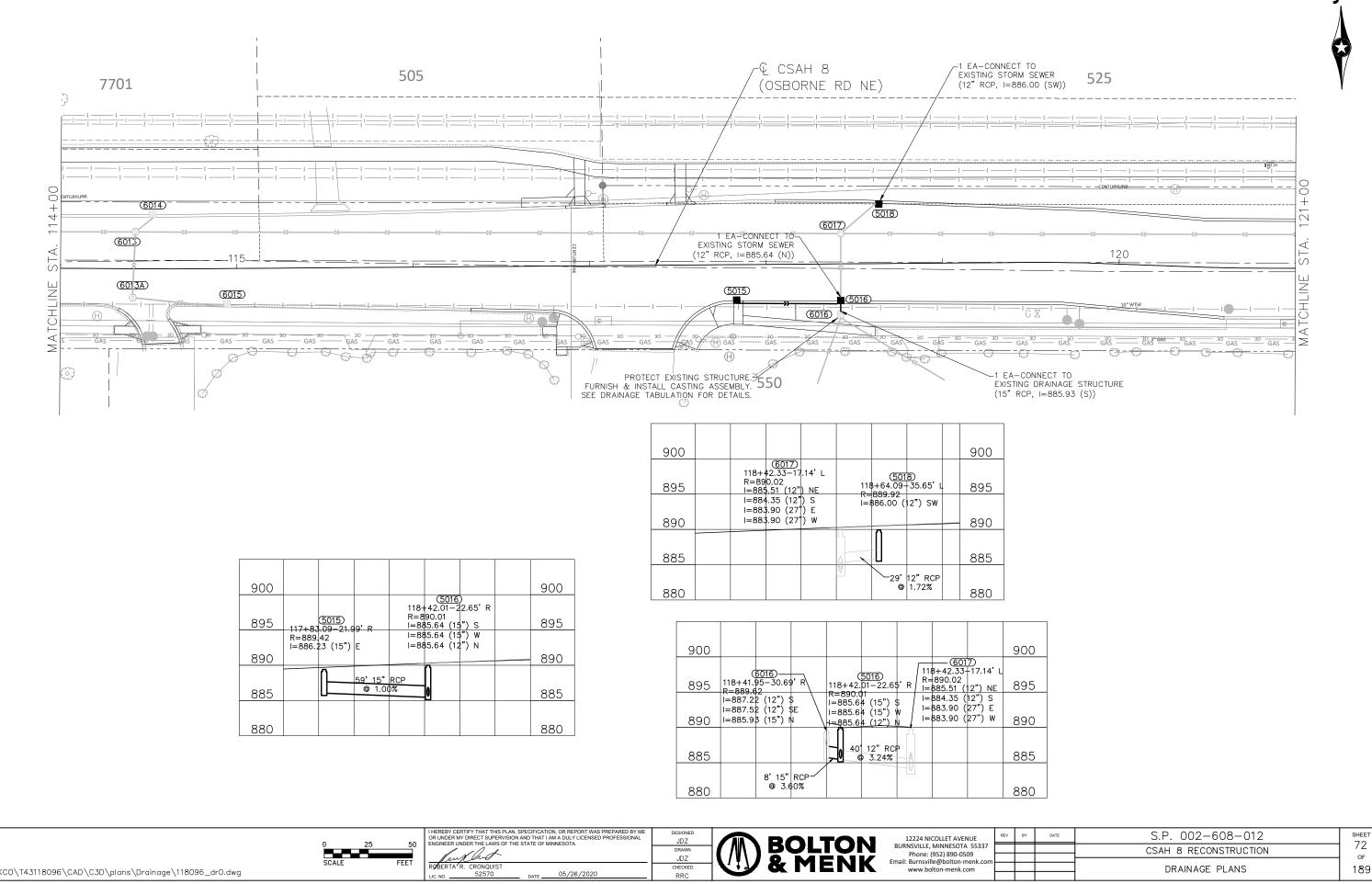
885		885		885		885
880	(5001) 102+06.41-19.80' R	6003) 103+63.06-20.92' R 880	(6060)	880	(5009) 105+51.39-33.00' R R=874.70 I=871.46 (15") NW	880
875	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R=875.11 880 I=869.61 (12") S I=869.41 (15") E I=869.56 (12") N 875	(6060) (5003) 103+63.35-34.77' L (5003) R=872.59 104+29.99-36 I=870.39 (15") E R=873.48 I=870.29 (12") S I=870.72 (15")			(6008) 105+43.62-20.85 R=874.50 I=870.98 (15') SE 875
870	I=869.29 (12") N 4.3 SUMP SUMP=864.61 55' 15" RCP 157' 15" RCP @ 0.13%	1=869.31 (15") W 870	67' 15" RCP @ 0.50%	870	6009 105+42.53-44.73' R R=874.62 I=871.82 (12") N	870
865	0 0.13%	865		865	15' 12" RCP @ 2.45%	14' 15" RCP @ 3.33% 865
860	SUMP STRUCTURE-WITH SAFL BAFFLE	860		860		860

DESIG

JDZ

drawn JDZ


CHECKE RRC


I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

05/26/2020

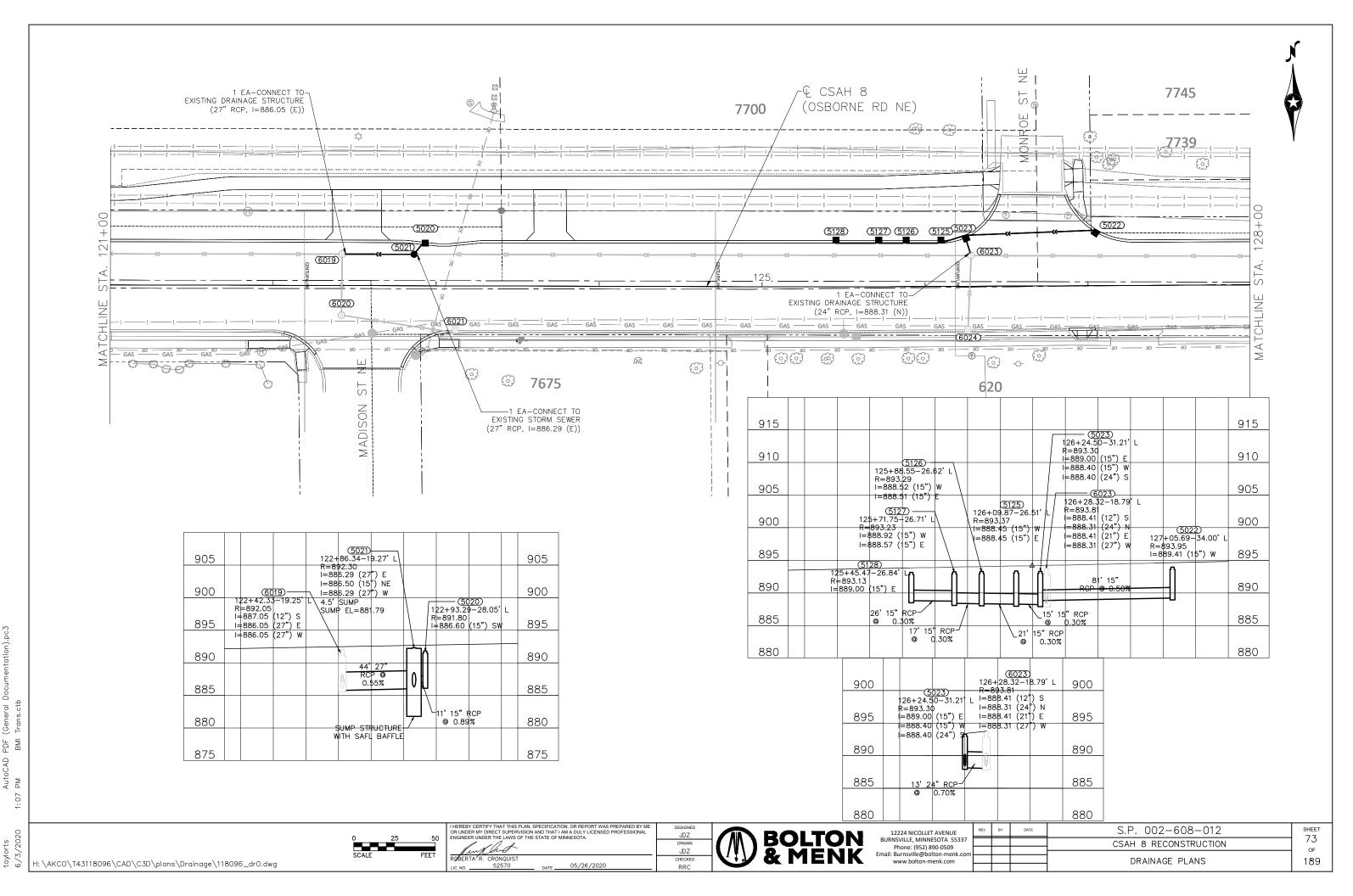
BOLTON & MENK

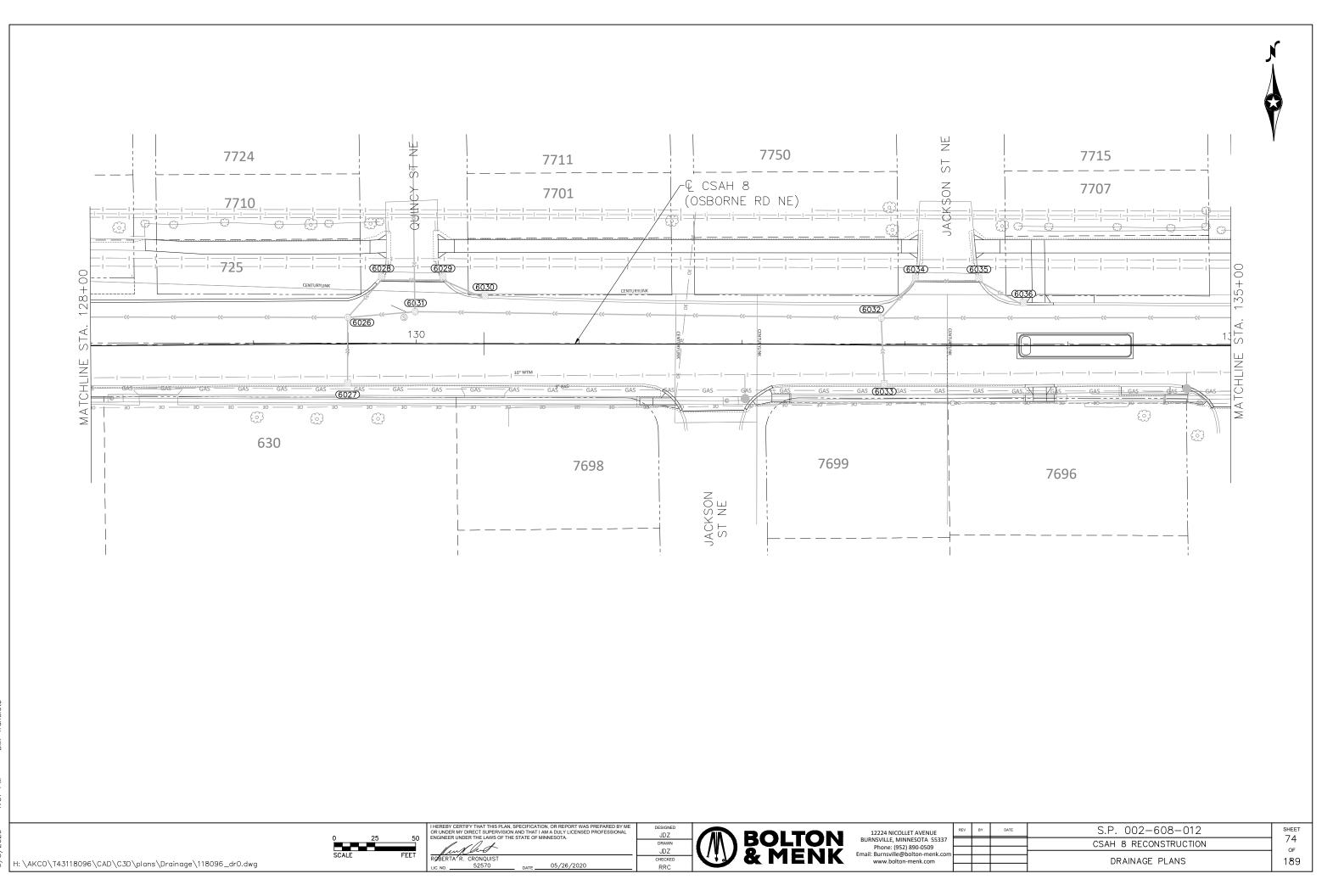
12224 NICOLLET AVENUE	REV	BY	DATE	S.P. 002-608-012	SHEET
BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509				CSAH 8 RECONSTRUCTION	/U OF
Email: Burnsville@bolton-menk.com www.bolton-menk.com				DRAINAGE PLANS	

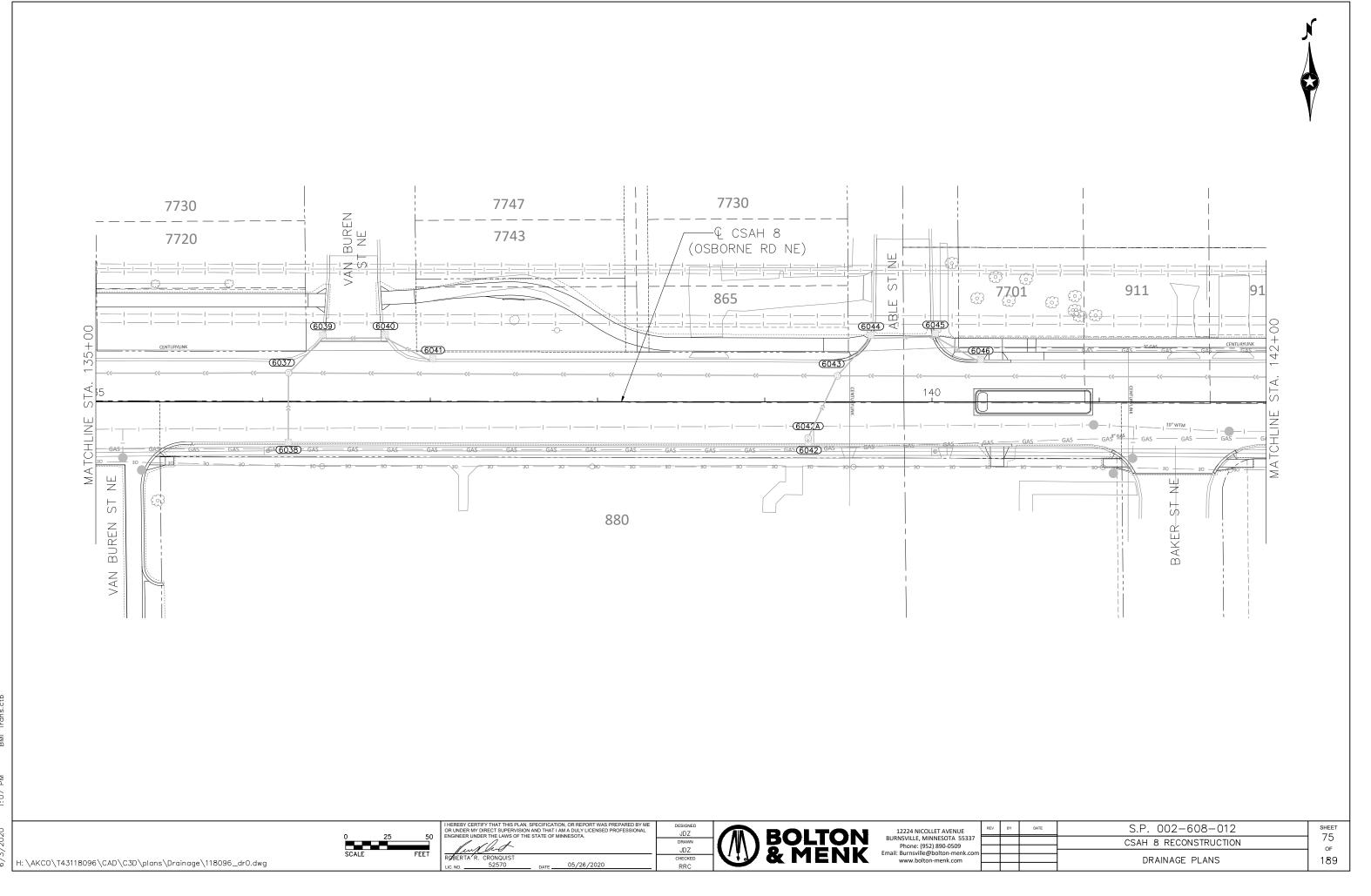
CHECKE

05/26/2020

DATE

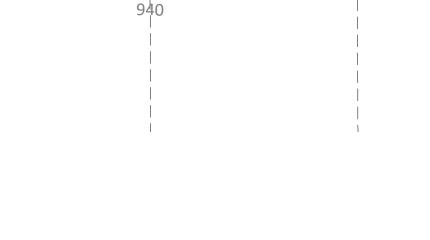

H: \AKCO\T43118096\CAD\C3D\plans\Drainage\118096_dr0.dwg


FEET


LIC. NO.

52570

ΕV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	/2
				OF
			DRAINAGE PLANS	189
				100

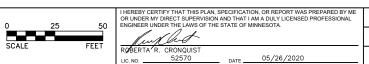


7708 Ш Z S TYLER 923

7700

GAS

GAS


ш

- GAS

GAS

— GAS — GAS — GAS — GAS — GAS —

H: AKCO T43118096 CAD C3D plans Drainage 118096 dr0.dwg

6048

6047)

980

- GAS

6049

145

GAS 3" GAS GAS

- CSAH 8

(OSBORNE RD NE)

GAS

1010

7701

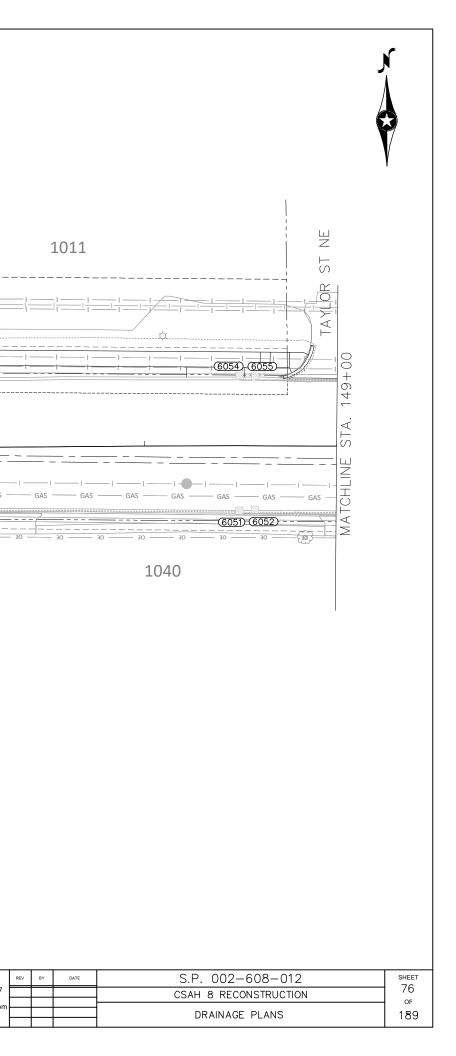
GAS

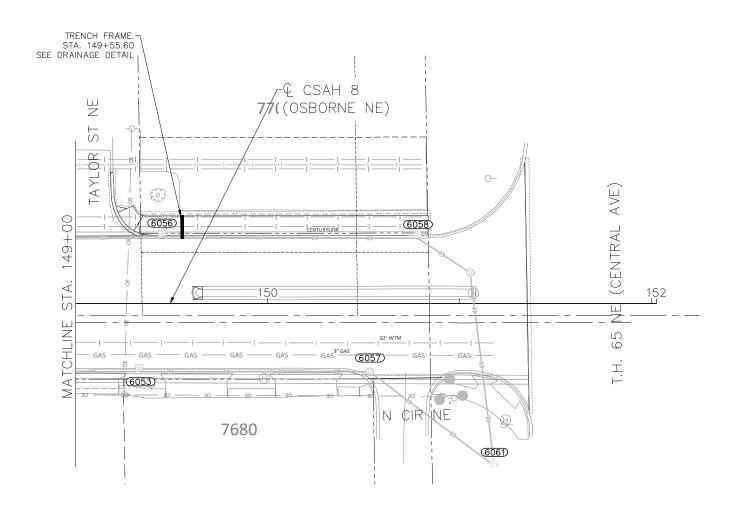
990

entation).pc3 AutoCAD PDF (General Doci 1:07 PM BMI Trans.ctb taylorts 6/3/2020 C

 \triangleleft

 \triangleleft


Ū Ш ИЦ


屵

()

 \triangleleft

 \geq

DE

D

CH

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

DATE

05/26/2020

0 25 SCALE

50

FEET

signed JDZ		BALTAN	12224 NICOLLET AVENUE	REV
RAWN		BULIUN	BURNSVILLE, MINNESOTA 55337	
JDZ	\ / \ /	0 MENIK	Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com	
ECKED		CKITIEINK	www.bolton-menk.com	
RC				

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	// OF
			DRAINAGE PLANS	189

STRICT	URE NO.	E NO. CENTER OF CASTING LOCATION									RC PIPE SEWER DES 3006					EX	R K					
FLOWS	FLOWS TO	DWS ALIGN.	LIGN. STATION	IGN. STATION	OFFSE	T	48-4020	DESIGN SPECIAL 1	DESIGN SPECIAL 2	CASTING ASSEMBLY TYPE	TOP OF CASTING ELEV	OUTLET ELEV. (1)	INLET ELEV. (2)	SLOPE OF PIPE	15" CL V	24" CL III	27" CL III	FINE AGG. BED. (CV)	STEPS REQUIRED	CONNECT TO DRAINAGE STRUCTURE	CONNECT TO EX STORM SEWER	
						LIN FT	EACH	EACH						LIN FT	LIN FT	LIN FT	CU YD		EACH	EACH	1	
5001	6002	CSAH 8	102+06.41	19.8'	ייים		1	1	1	872.15	869.11		, ,		1	1		YES		2	—	
5001	6060	CSAH 8	102+00.41	36.4'		2.6	T		в – 9	873.48		870.39	0.50%	67			10	NO	1	2	+	
6060	0000	CSAH 8	104+29.99			2.0			в = 9 А - 7	872.59	070.72	010.39	0.50%	07			10	N/A			_	
	60.00					0 1					071 40	070 00	2 2 2 2	1.4					1	1	_	
5009	6008	CSAH 8	105+51.39		RT	3.1			B - 9	874.70	871.46			14			2	NO	1	1	+	
5015	5016	CSAH 8	117+83.09		RT	3.7			в – 9	889.42	886.23	885.64		59			9	NO			_	
6016	5016	CSAH 8	118+41.95	30.7'					A - 7	889.62	885.93	885.64	3.60%	8			2	N/A	1			
5016	6017	CSAH 8	118+42.01		RT	4.2			в – 9	890.01	885.64							NO		1	\perp	
5018	6017	CSAH 8	118+64.09			3.9			В - 9	890.01	886.00	000 50						NO		1	_	
5020	5021 6019	CSAH 8	122+93.29 122+86.34			5.1		1	в – 9	891.80 892.31	886.60	886.50 886.05		11		44	2	YES	1	1	_	
5021 5022	5023	CSAH 8 CSAH 8	127+05.69		LT LT	4.4		⊥ ↓	B - 9	892.31	886.29	886.05	0.55%	81		44	10	N/A NO	1	1	_	
5128	5127	CSAH 8	125+45.47		LT	4.4			в – э	893.13	889.00	888.92	0.30%	26			12	NO			+	
5127	5126	CSAH 8	125+71.75		LT	4.6			B - 9	893.23	888.57	888.52	0.30%	17			3	YES			_	
5126	5125	CSAH 8	125+88.55		LT	4.7		+	B - 9	893.29	888.51	888.45		21			3	YES			+	
5125	5023	CSAH 8	126+09.87		LT	4.8			B - 9	893.37	888.45	888.40	0.30%	15			3	YES			+	
5023	6023	CSAH 8	126+24.50			4.8			B - 9	893.30	888.40	888.31			13		3	YES	1		+	
6062		CSAH 8	101+96.23					+	A - 7	871.56								N/A			+	
6063		CSAH 8	101+86.00	37.6'	LT				A - 7	871.47								N/A			+	
			PROJ	ECT TOT	ALS	49.9	1	1			1			319	13	44	63		5	6	+	

DESIGN

- CENTER OF GRATE FOR CATCH BASIN GRATES.

- INVERT ELEVATIONS ARE GIVEN TO THE CENTER OF STRUCTURE IN TABLES AND PROFILES

- ELEVATIONS FOR RC PIPE CULVERTS ARE TO THE END OF THE APRON.

- STATION AND OFFSET ARE TO CENTER OF CASTING FOR MANHOLES, GUTTER LINE FOR CATCH BASINS OR END OF APRON UNLESS OTHERWISE NOTED.

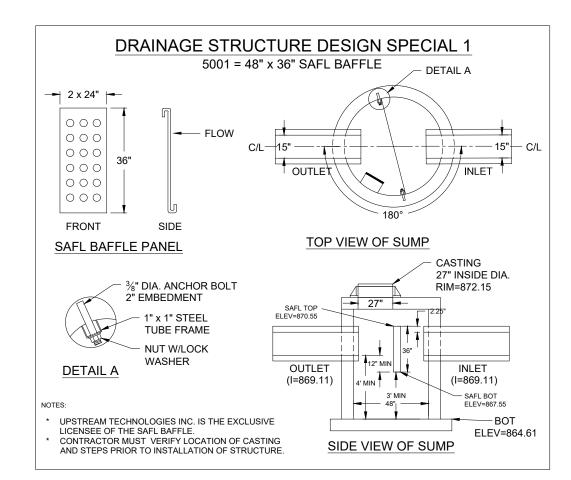
- ADJUSTING RINGS ARE INCIDENTAL.

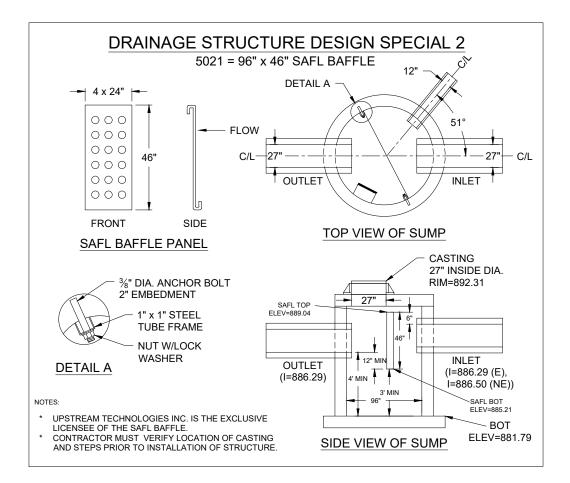
- IF STEPS REQUIRED, STRUCTURE TO INCLUDE MANHOLE STEPS 16" ON CENTER. SEE MNDOT STANDARD PLATE 4180.

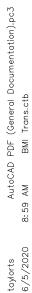
	S	TORM S	SEWEI	R REM	IOVAL TABULATION	F			
STRUC	TURE LOCATIO	ОМ	E SE RE	VE RC SEWER					
ALIGN.	GN. STATION OFFSET		IGN. STATION OFFSET		REMOVE DRAINAGE STRUCTURE	REMOVE PIPE SEV	REMARKS		
			EACH	LIN FT					
		•					İ		
CSAH 8	105+56	26' RT	1	22			1		
CSAH 8	118+65	37' LT	1	4					
CSAH 8	212+96	45' LT	1	98	INCLUDES PIPE REMOVAL ON MAINLINE TO ACCOMMODATE SA	FFLE BAFLE			
CSAH 8	126+50	43' LT	1	30					
CSAH 8	126+88	43' LT	1	34			1		
CSAH 8	127+14	40' LT	1	22			1		
	•	TOTAL	6	210]		
							-		

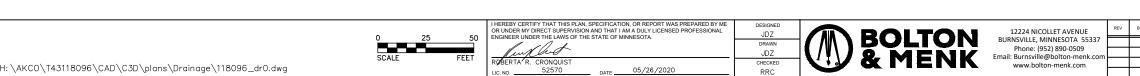
CASTING ASSE RING OR ASSEMBLY FRAME NO. CASTING в – 9 MODIFIED 805 (SEE DRAII A - 7 700-7 TOT

BOLTON & MENK

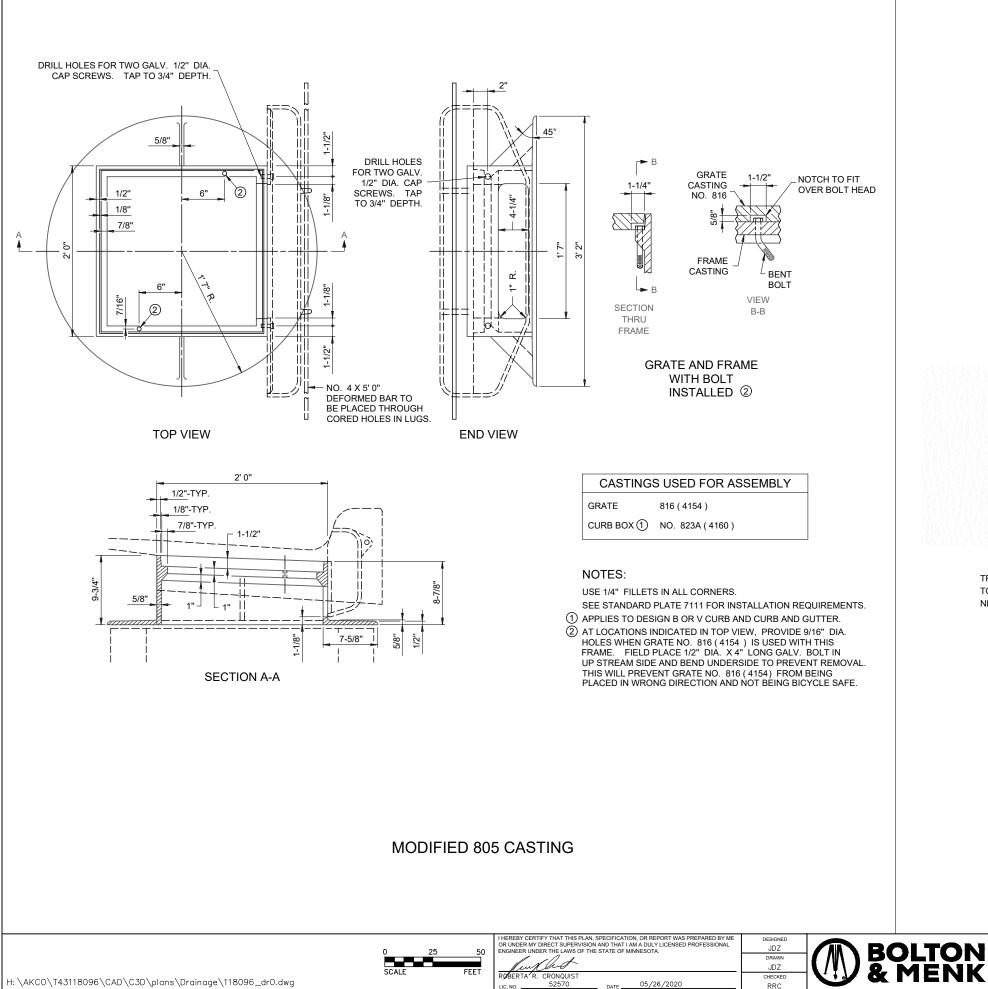

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA. JDZ SCALE DRAWN JDZ CHECKEE RRC ROBERTA R. CRONQUIST LIC. NO. 52570 FEET H:\AKCO\T43118096\CAD\C3D\plans\Drainage\118096_dr0.dwg 05/26/2020 DATE


entation).pc3 Ď ō (Gene Tron• PDF BMI AutoCAD F PM 1:07


taylorts 6/3/2020


MBLY (S	MBLY (STORM)										
	COVER OR	CURB	2506								
	GRATE	BOX	QUANTITY								
	CASTING	DOX	(EACH)								
INAGE DETAILS)	816		12								
	716		4								
TALS			16								

12224 NICOLLET AVENUE	REV	BY	DATE	S.P. 002-608-012	SHEET
BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509				CSAH 8 RECONSTRUCTION	78 ₀F
Email: Burnsville@bolton-menk.com www.bolton-menk.com				DRAINAGE TABULATIONS	189



EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	79 of
_			DRAINAGE DETAILS	0⊧ 189
			BRANNINGE BETAILES	105

IC. NO.

NEENAH R-4995-B1 WITH SOLID COVER OR EQUIVALENT.

12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 55337

Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com

www.bolton-menk.com

taylor 6/3/

TRENCH FRAME & SOLID GRATE

TRENCH FRAME WITH SOLID COVER. TO BE INSTALLED IN BITUMINOUS TRAIL. TOTAL LENGTH OF TRENCH FRAME IS 12' WITH A SOLID GRATE. BOTH ENDS TO BE OPEN, LIGHT DUTY.

REV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	80
	1			OF
			DRAINAGE DETAILS	189

STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

CSAH 8 RECONSTRUCTION 2019 CITY OF FRIDLEY

ANOKA COUNTY, MINNESOTA

by the National Pollutant Discharge Elimination System (NPDES) Phase II program.

and maintenance of the erosion prevention and sediment control BMPs.

PHONE 763-324-3189

CONTACT PERSON

CHRIS OSTERHUS

PROJECT BOUNDARY

IMPAIRED, SPECIAL OR PROTECTED WATERS

NATIONAL WETLANDS INVENTORY

RECEIVING WATERS

PROJECT AREAS: Total Project Size (disturbed area) =

Existing area of impervious surface = Post construction area of impervious surface = Total new impervious surface area created =

10.8	ACRES
8.6	ACRES
8.4	ACRES
0.0	ACRES

07/06/2020

09/11/2020

Planned Construction Start Date: Estimated Construction Completion Date:

PERMANENT STORMWATER MANAGEMENT SYSTEM:

Type of storm water management used if more than 1 acre of new impervious surface is created:

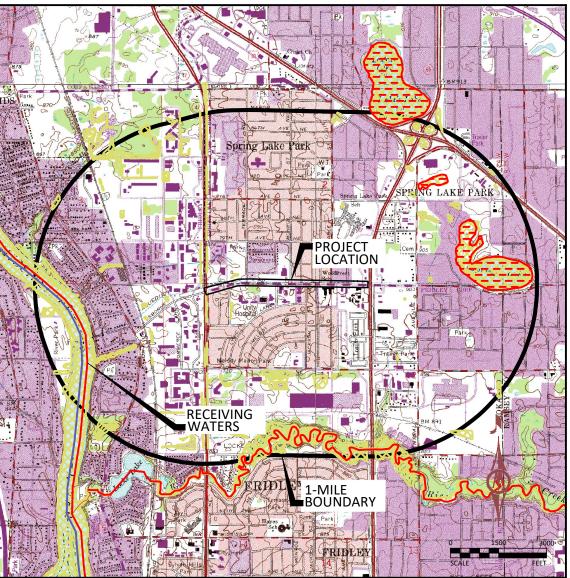
Wet Sedimentation Basin
Infiltration/Filtration
Regional Pond

Permanent Stormwater Management Not Required None needed because no net new impervious surface will be created

PROJECT LOCATION

Nlut

52570


ROBERTA R. CRONQUIST

C NO

		-			
COUNTY	TOWNSHIP	RANGE	SECTION	LATITUDE	LONGITUDE
ANOKA	30	24	1,2,11,12	45.10787°	-93.25290°

TEMPORARY EROSION AND SEDIMENT CONTROL BMP SUMMARY	QUANTITY	UNIT
Sediment Control Log Type Wood Chip	40	LIN FT
Silt Fence - Type MS	2605	LIN FT
Storm Drain Inlet Protection	46	EA
Rapid Stabilization Method 3 (500% of the area shown on ESC plans)	69	MGAL

PERMANENT EROSION AND SEDIMENT CONTROL BMP SUMMARY	QUANTITY	UNIT
Seeding (See Turf Establishment Plan for Seed Mix Requirements)	2.3	AC
Hydraulic Reinforced Fiber Matrix	8977	POUND

RECEIVING WATER

Receiving waters, including surface water, wetlands, Public Waters, and stormwater ponds, within 1-mile of the project boundary are identified on the USGS 7.5 min quad map above. Receiving waters that are impaired, the impairment, and WLA are listed as follows. All specific BMPs relative to construction activities listed in the permit for special, prohibited, restricted, or impaired have been incorporated into this plan. All specific BMPs listed in approved TMDLs and those BMPs listed for construction related waste load allocations have also been incorporated.

NAME OF WATER BODY

Mississinni River

¹ Special prohibited and restricted waters are listed in Section 23 of the MN Construction Stormwater General Permit (MNR100001) Identified as impaired under section 303 (d) of the federal Clean Water Act for phosphorus, turbidity, TSS, dissolved oxygen, and/or aquatic biota. ³ Construction Related TMDLs include those related to: phosphorus, turbidity, TSS, dissolved oxygen, and/or aquatic biota.

IMPLEMENTATION SCHEDULE AND PHASING: The Contractor is required to provide an updated schedule and site management plan meeting the minimum requirements of Section 1717 of the Minnesota Standard Specifications for Construction.

- 2) Install perimeter sediment control, inlet protection, and construction exit
- Perform necessary removals.
- Perform preliminary site grading. Construct proposed utilities.
- Construct proposed curb relocations and mill and overlay.
- Stabilize site as indicated on construction plans.
- Add additional temporary BMPs as necessary during construction based on inspection reports.
- Ensure final stabilization measures are complete.
- 11) Submit Notice of Termination (NOT) to MPCA. NOTE: The NOT must be submitted to MPCA before Final Stabilization is

considered complete

BOLI

	12224 NICOLLET AVENUE	RE
N	BURNSVILLE, MINNESOTA 55337	
	Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com	
	www.bolton-menk.com	

952-890-0509 SWPPP DESIGNER: Bolton & Menk, Inc XXXXX CONTRACTOR: TBD TBD TBD CONSTRUCTION SWPPP MANAGER: TBD TBD TBD CITY OF FRIDLEY/SPRING PARTY RESPONSIBLE FOR LONG TERM O&M: XXXXX XXX-XXX-XXXX IAKE PARK

The Contractor and Owner will be joint applicants under the MPCA's General Stormwater Permit for Construction Activity as required

The Contractor shall provide one or more trained Construction SWPPP Manager(s) knowledgeable and experienced in the application

of erosion prevention and sediment control BMPs that will oversee the implementation of the SWPPP, and the installation, inspection

A Construction SWPPP Manager must be available for an on-site inspection within 72 hours upon request by the MPCA.

COMPANY

ANOKA COUNTY

The SWPPP Designer, Construction SWPPP Manager, and BMP Installer must have appropriate training. Documentation showing training commensurate with the job duties and responsibilities is required to be included in the SWPPP prior to any work beginning on the site. Training documentation for the SWPPP Designer is included on the Narrative sheet. The Contractor shall attach training documentation to this SWPPP for the Construction SWPPP Manager and BMP Installer prior to the start of construction. This information shall be kept up to date until the project NOT is filed.

ADDITIONAL COMPENSATION

RESPONSIBLE PARTIES:

OWNER

Payment for all work associated with Erosion and Sediment Control shall be as described in the Project Manual. Unless otherwise authorized by the Owner no additional payment shall be made for any work required to administer and maintain the site erosion and sediment control in compliance with the Minnesota Pollution Control Agency (MPCA) - General Stormwater Permit for Construction Activity (MN R100001) including but not limited to inspection, maintenance, and removal of BMPs or addition of BMPs to accommodate Contractor phasing.

DOCUMENT RETENTION

Permittees must make the SWPPP, including all inspection reports, maintenance records, training records and other information required by this permit, available to federal, state, and local officials within three (3) days upon request for the duration of the permit and for three (3) years following the NOT.

GENERAL STORMWATER DISCHARGE REQUIREMENTS

All requirements listed in Section 5.1 of the Permit for the design of the permanent stormwater management system and discharge have been included in the preparation of this SWPPP. These include but are not limited to:

- 1. The expected amount, frequency, intensity, and duration of precipitation.
- The nature of stormwater runoff and run-on at the site
- Peak flow rates and stormwater volumes to minimize erosion at outlets and downstream channel and stream bank erosion. 4. The range of soil particle sizes expected to be present on the site.

Permanent stormwater treatment systems for this project have been designed in accordance with the guidance in the MN Stormwater Manual in place at the time of bidding. Copies of the design information and calculations are part of this SWPPP and will be provided in digital format upon written request to the Engineer

> DESCRIPTION OF CONSTRUCTION ACTIVITIES AND STORMWATER MANAGEMENT: Construction activities include: Minor site grading, mill and overlay, several curb realignments and median reconstruction which necessitates relocation of several catch basins and one storm sewer lead.

Stormwater currently drains from east to west in a storm sewer system under CSAH 8 (Osborne Road). It is assumed that this system discharges into a treatment pond located south of CSAH 8 and east of East River Road and ultimately discharges into the Mississippi River which is a special water identified as Restricted by the MPCA Construction Stormwater General Permit

After construction is complete stormwater will follow the same drainage pattern as the existing conditions.

Xref \Project Border dwg

This project does not include the construction of any stormwater management BMPs on site.

05/26/2020

HEREBY CERTIFY THAT THIS PLAN. SPECIFICATION. OR REPORT WAS PREPARED BY ME EN UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONA ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA. **IDZ**

DRAW

JDZ

RRC

Type MS	2605
n Inlet Protection	46
ilization Method 3 (500% of the area shown on ESC plans)	69

PERMANENT EROSION AND SEDIMENT CONTROL BMP SUMMARY	QUANTITY	UNIT
Seeding (See Turf Establishment Plan for Seed Mix Requirements)	2.3	AC
Hydraulic Reinforced Fiber Matrix	8977	POUN

TYPE (ditch, pond, wetland, lake, etc.)	Special, Prohibited, Restricted Water ¹	Flows to Impaired Water Within 1-Mile ²	USEPA Approved Construction Related TMDL ³
River	Yes	Yes	No

1) Submit SWPPP Updates to Engineer. Submittal shall include any requested changes to the SWPPP, including but not limited to: Trained Personnel, Locations for Stockpiles, Concrete Washout, Sanitation Facilities, Types and Locations of Erosion & Sediment Control. Failure to submit updates shall be considered acceptance of the SWPPP as designed with no changes.

Provide digital copy of all Field SWPPP Documentation including Inspection Reports and SWPPP Revisions to the Owner.

V	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	81
				OF
			SWPPP AND WATER RESOURCES NOTES	189
				105

Information contained in this SWPPP narrative sheet summarizes requirements of the GENERAL PERMIT AUTHORIZATION TO DISCHARGE STORMWATER ASSOCIATED WITH CONSTRUCTION ACTIVITY UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM/STATE DISPOSAL SYSTEM PROGRAM - Permit No: MN RI0000I (Permit) as they apply to this project. All provisions of the Permit including those not specifically cited herein shall apply to this project. The Contractor is responsible to be familiar with and comply with all conditions of the permit. The full text of the Permit is available at: https://www.pca.state.mn.us/sites/default/files/wq-strm2-80a.pdf

SWPPP AMENDMENTS AND SUBMITTALS

Contractor must prepare and submit to the Engineer a SWPPP amendment as necessary to include additional Best Management Practices (BMPs) to correct problems identified or address the following situations

- 1. Contact information and training documentation for Construction SWPPP Manager and BMP Installer
- 2. There is a change in construction method of phasing, operation, maintenance, weather or seasonal conditions not anticipated during the design of the SWPPP including but not limited to:
 - a. Types and/or Locations of BMPs

b. Material Storage and Spill Response

c. Fueling Plans

d. Locations for Stockpiles, Concrete Washout, and Sanitation Facilities and

e. Project Phasing

- 3. It is determined that the SWPPP is not achieving objectives of minimizing pollutants in stormwater discharges associated with construction activity, or
- 4. The SWPPP is not consistent with the terms and conditions of the permit.

The Contractor may implement SWPPP amendments immediately and is not required to wait for Engineer review of the submittal. The responsibility for completeness of SWPPP amendments and compliance with the Permit lies with the Contractor. Review, comment, or lack of comment by the Engineer on a SWPPP amendment shall not absolve the responsibilities of the Contractor in anv wav.

If a change order is issued for a design change the SWPPP amendment will be prepared by the Engineer and included in the change order

In addition to SWPPP amendments, the Contractor shall submit to the Engineer Weekly Erosion and Sediment Control Schedule meeting the requirements of MnDOT 1717.

The Contractor shall keep copies of all SWPPP amendments, Weekly Erosion and Sediment Control Schedules, inspection logs, and maintenance logs with the field copy of the SWPPP. A PDF copy of these documents will be provided along with a copy of the final Field Copy of the SWPPP to the Engineer along with the signed Notice of Termination when final stabilization is complete.

EROSION PREVENTION PRACTICES

Stormwater conveyance channels shall be routed around unstabilized areas. Erosion controls and velocity dissipation devices shall be used at outlets within and along the length of any constructed conveyance channel

The normal wetted perimeter of all ditches or swales, including storm water management pond slopes, that drain waters from the site must be stabilized within 200' of any property edge or discharge point, including storm sewer inlets, within 24 hours of

Temporary or permanent ditches or swales used as sediment containment during construction do not need to be stabilized during temporary period of use and shall be stabilized within 24 hours after no longer used as sediment containment

Mulch, hydromulch, tackifier, or similar practice shall not be used in any portion of the wetted perimeter of a temporary or permanent drainage ditch or swale section with a continuous slope of greater than 2 percent.

Energy dissipation shall be installed at all temporary or permanent pipe outlets within 24 hours of connection to a surface water or permanent stormwater treatment system

The Contractor shall phase construction and use construction methods to the extent practical to minimize exposed soils. The project phasing shall be documented in the Weekly Erosion and Sediment Control Schedule.

SEDIMENT CONTROL PRACTICES

Down gradient BMPs including perimeter BMPs must be in place before up gradient land- disturbing activities begin and shall remain in place until final stabilization.

All BMPs that have been adjusted or removed to accommodate short-term activities shall be re-installed or replaced the earlier of the end of the work day or before the next precipitation event even if the activity is not complete

Inlet BMPs may be removed for specific safety concerns. The BMPs shall be replaced as soon as the safety concern is resolved. The removal shall be documented in the SWPPP as a SWPPP amendment.

Temporary stockpiles must have sediment control BMPs. The Contractor shall prepare and submit to the Engineer a SWPPP amendment showing the location of temporary stockpiles and the BMPs for each stockpile. The SWPPP amendment must meet the minimum requirements of Section 9 of the Permit.

Soil compaction shall be minimized and topsoil shall be preserved, unless infeasible or if construction activities dictate soil compaction or topsoil stripping.

The use of polymers, flocculants, or other sedimentation treatment chemicals are not proposed as part of this SWPPP as designed by the Engineer. If methods or phasing of construction require the use of any of these chemicals, the Contractor shall prepare and submit to the Engineer a SWPPP amendment that meets the minimum requirements of Section 9 of the Permit. TEMPORARY SEDIMENTATION BASINS

A temporary sedimentation basin has not been included in this SWPPP as designed by the Engineer. If a basin is later determined to be desirable or necessary the Contractor shall prepare and submit to the Engineer a SWPPP amendment. Temporary sedimentation basins shall meet or exceed the minimum requirements of Section 14 of the Permit and shall include a basin draining plan meeting or exceeding the minimum requirements of Section 10 of the Permit. Where the site discharges to Special and/or Impaired Waters the SWPPP amendment shall also meet or exceed the minimum requirements of Section 23 of the permit

DEWATERING

A dewatering plan has not been included in this SWPPP as designed by the Engineer. If dewatering is required for this project, the Contractor shall prepare and submit to the Engineer a SWPPP amendment. All dewatering shall meet or exceed the min requirements of Section 10 of the Permit.

POLLUTION PREVENTION

Products and materials that have the potential to leach pollutants that are stored on the site must be stored in a manner designed to minimize contact with stormwater. Materials that are not a source of potential contamination to stormwater or that are designed for exposure to stormwater are not required to be covered.

Hazardous materials including but not limited to pesticides, fertilizer, petroleum products, curing compounds and toxic waste must be properly stored and protected from stormwater exposure as recommended by the manufacturer in an access restricted area.

Solid waste must be stored, collected and disposed of in compliance with Minnesota Administrative Rules Chapter 7035.

Portable toilets must be positioned so that they are secure and will not be tipped or knocked over. Sanitary waste must be disposed of properly in accordance with Minn. R. CH 7041.

Exterior vehicle or equipment washing on the project site shall be limited to a defined area of the site. No engine degreasing is allowed on site. A sign must be installed adjacent to each washout facility that requires site personnel to utilize the proper facilities for disposal of concrete and other washout wastes.

The Contractor shall prepare and submit a SWPPP amendment detailing the location and BMPs proposed for storage of materials, solid waste, portable toilets, and exterior vehicle or equipment washing on the site. The SWPPP amendment shall include shall include a spill prevention and response plan that is appropriate for the materials proposed to be on the site. The SWPPP amendment sheet meet or exceed the minimum requirements of Section 12 of the Permit.

INSPECTION & MAINTENANCE

A trained person shall routinely inspect the entire construction site at the time interval indicated on this sheet of the SWPPP during active construction and within 24-hours after a rainfall event greater than 0.5 inches in 24 hours. Following an inspection that occurs within 24-hours after a rainfall event, the next inspection must be conducted at the time interval indicated in the Receiving Waters Table found on the SITE PLAN AND INFORMATION SHEET of the SWPPP.

All inspections and maintenance conducted during construction must be recorded on the day it is completed and must be retained with the SWPPP. Inspection report forms are available in the Project Specifications. Inspection report forms other than those provided shall be approved by the engineer.

The Contractor may request a change in inspection schedule for the following conditions:

- a. Inspections of areas with permanent cover to be reduced to once per month.
- b. Inspections of areas that have permanent cover and have had no construction activity for 12 months to be suspended until construction resumes.
- c. Inspections of areas where construction is suspended due to frozen ground conditions, inspections to be suspended until the earlier of within 24 hours of runoff occurring, or upon resuming construction.

No change in inspection schedule shall occur until authorized by the Engineer.

Inspections must include

- 1. All erosion prevention and sediment control BMPs and Pollution Prevention Management Measures to ensure integrity and effectiveness
- 2. Surface waters, including drainage ditches and conveyance systems for evidence of erosion and sediment deposition.
- 3. Construction site vehicle exit locations, streets and curb and gutter systems within and adjacent to the project for sedimentation from erosion or tracked sediment from vehicles
- 4. Infiltration areas to ensure that no sediment from ongoing construction activity is reaching the infiltration area and that equipment is not being driven across the infiltration area.

All non-functioning BMPs and those BMPs where sediment reaches one-half (1/2) of the depth of the BMP, or in the case of sediment basins one-half (1/2) of the storage volume, must be repaired, replaced, or supplemented by the end of the next business day after discovery, or as soon as field conditions allow.

Permittees must repair, replace or supplement all nonfunctional BMPs with functional BMPs by the end of the next business day after discovery, or as soon as field conditions allow.

Any sediment that escapes the site must be removed and the area stabilized within 7 calendar days of discovery unless precluded by legal, regulatory, or physical access in which case the work shall be completed within 7 calendar days of authorization. Paved surfaces such as streets shall have any escaped or tracked sediment removed by the end of the day that it is discovered. Sediment release, other than paved surfaces that can be cleaned up with street sweeping shall be reported immediately upon discovery to the Engineer.

PUBLIC WATER RESTRICTIONS:

For public waters that have been promulgated "work in water restrictions" during fish spawning time frames, all exposed soil areas that are within 200 feet of the water's edge, and drain to these waters must complete stabilization within 24-hours during the time period. MN DNR permits are not valid for work in waters that are designated as infested waters unless accompanied by an Infested Waters Permit or written notification has been obtained from MN DNR stating that such permit is not required. There is no exception for pre-existing permits. If a MN DNR Permit has been issued for the project and the water is later designated as infested, the Contractor shall halt all work covered by the MN DNR Permit until an Infested Waters Permit is obtained or that written notification is obtained stating that such permit is not required.

FINAL STABILIZATION

Final Stabilization is not complete until all the following requirements have been met:

1. Substantial Completion has been reached and no ground disturbing activities are anticipated.

2. Permanent cover has been installed with an established minimum uniform perennial vegetation density of 70 percent of its expected final growth. Vegetation is not required in areas where no vegetation is proposed by this project such as impervious surfaces or the base of a sand filter.

3. Accumulated sediment has been
system is operating as designed

SITE STABILIZATION COMPLETION:

Stabilization of exposed completed after the co permanently ceased no

SITE INSPECTION INTERVAL:

A trained person shall ro site during active constr

1)	Was an enviro or sale that in
2)	Does any port critical habitat
3)	Does any port
4)	Will any portion or a known or
5)	Have any Kars
6)	Is compliance for this projec
7)	Has the MN D

YPE OF PERMIT
Construction Stormwa
Watershed District Pe

ent has been removed from all permanent stormwater treatment systems as necessary to ensure the

4. All sediment has been removed from convevance systems

5. All temporary synthetic erosion prevention and sediment control BMPs have been removed. BMPs designated on the SWPPP to remain to decompose on-site may remain.

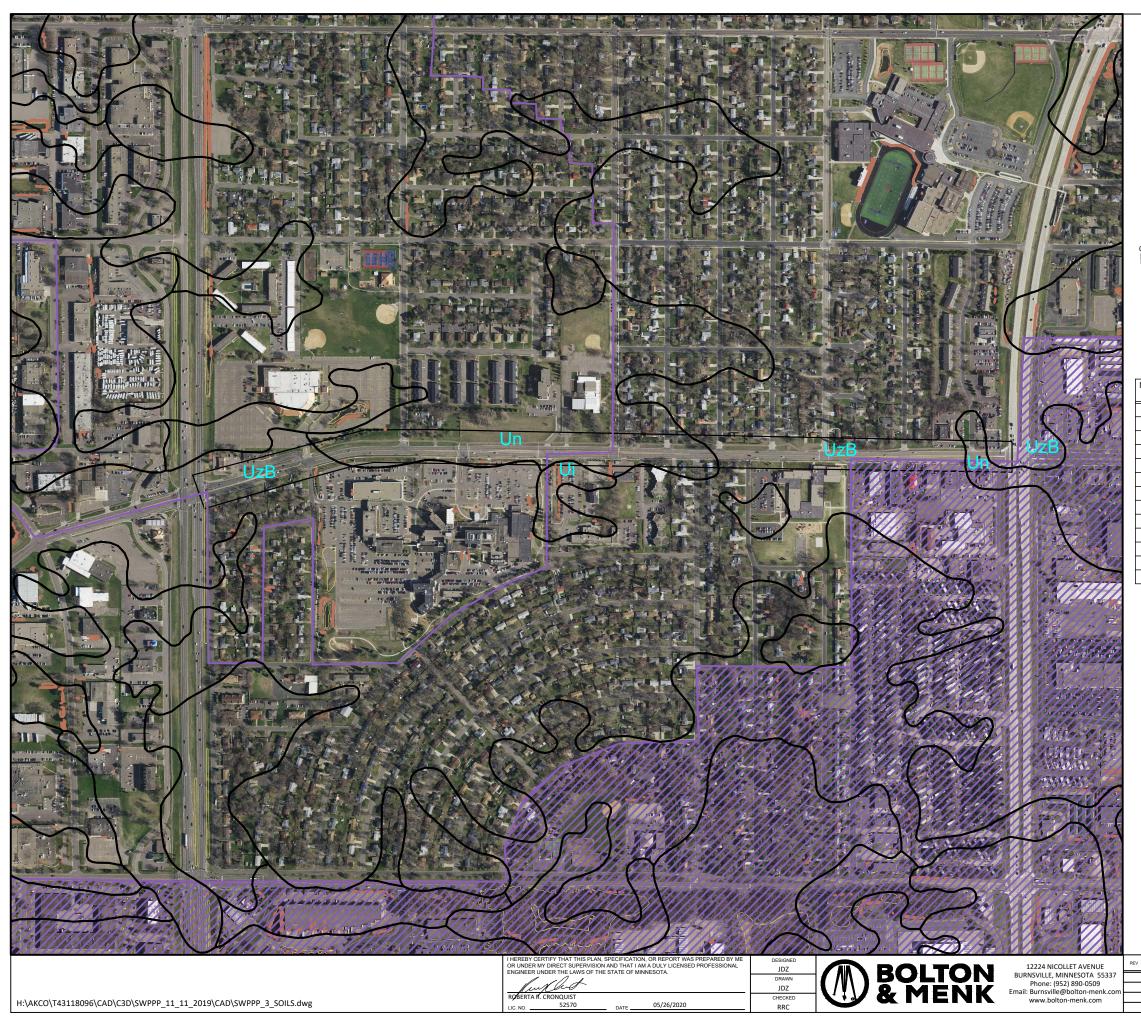
6. For residential construction only, permit coverage terminates on individual lots if the structures are finished and temporary erosion prevention and downgradient perimeter control is complete, the residence sells to the homeowner, and the permittee distributes the MPCA's "Homeowner Fact Sheet" to the homeowner

7. For agricultural land only (e.g., pipelines across cropland), the disturbed land must be returned to its preconstruction agricultural use prior to submitting the NOT.

	d soils shall begin immediately and shall be instruction activity has temporarily or b later than:	7 calendar days
--	--	-----------------

outinely inspect the entire construction ruction at an interval of no less than:	3 calenc
--	----------

ndar days


SPECIAL ENVIRONMENTAL CONSIDERATIONS AND PERMITS:

Was an environmental review required for this project or any part of a common plan of development or sale that includes all or any portion of this project?	NO
Does any portion of the site have the potential to affect threatened or endangered species or their critical habitat?	NO
Does any portion of this site discharge to a Calcareous fen.	NO
Will any portion of the site potentially affect properties listed on the National Register of Historic Places or a known or discovered archeological site?	NO
Have any Karst features have been identified in the project vicinity?	NO
Is compliance with temporary or permanent stormwater management design requirements infeasible for this project?	NO
Has the MN DNR promulgated "work in water restrictions" for any Public Water this site disharges to during fish spawning?	NO

	PERMITTING AGENCY	PERMIT STATUS AND CONDITIONS
ter NPDES	MPCA	
mit	CCWD	Permit #19-230 - Conditional Approval 3/24/2020

SWPPP DESIGNER TRAINING DOCUMENTATION:

BY	DATE	S.P. 002-608-012	SHEET
		CSAH 8 RECONSTRUCTION	82
			OF
		SWPPP AND WATER RESOURCES NOTES	189
			100

LEGEND

PROJECT BOUNDARY

SOIL TYPE

IMPAIRED, SPECIAL OR PROTECTED WATERS

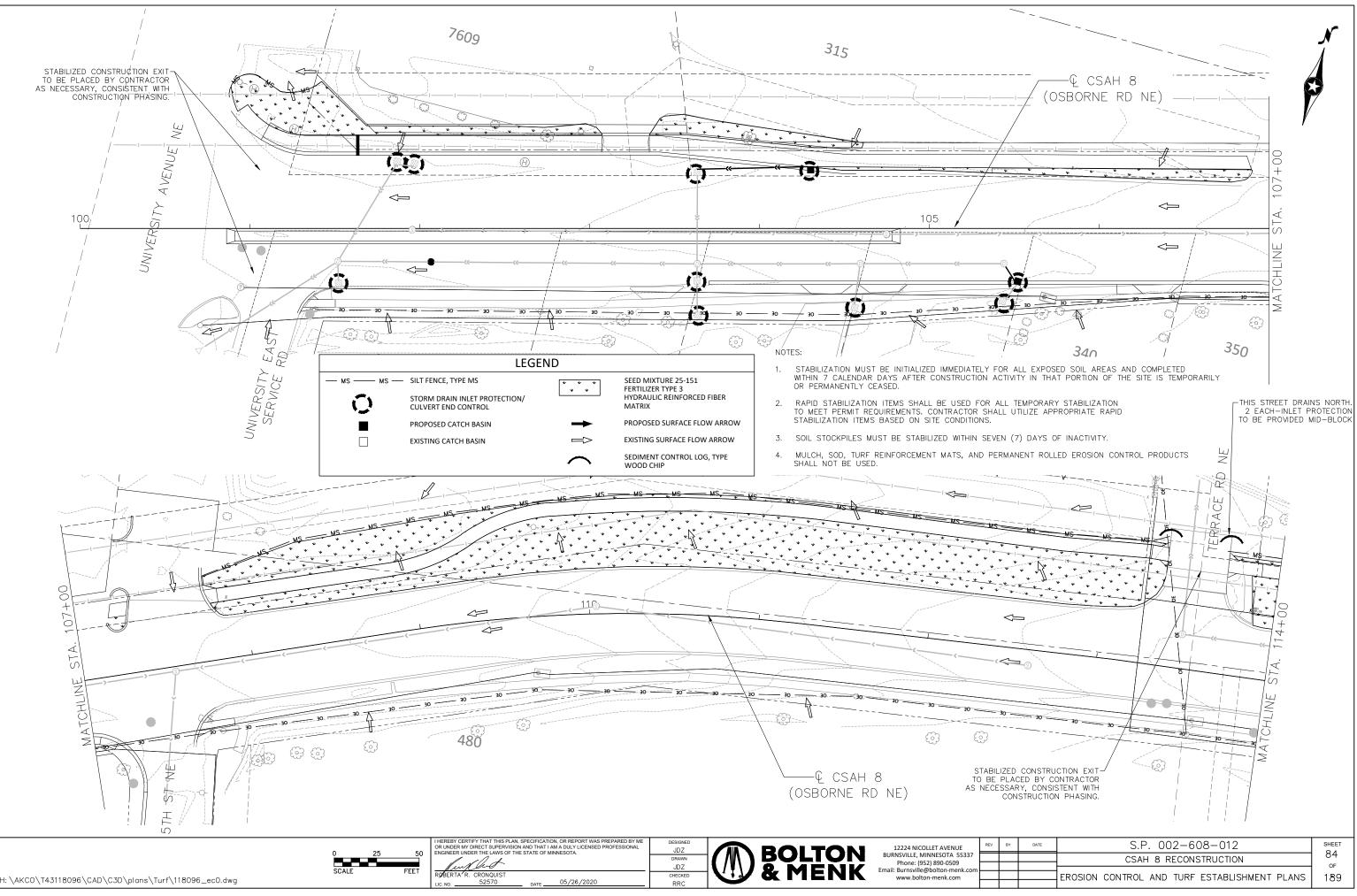
NATIONAL WETLANDS INVENTORY

DWSMA, LOW VULNERABILITY

STEEP SLOPES (>33.3%)

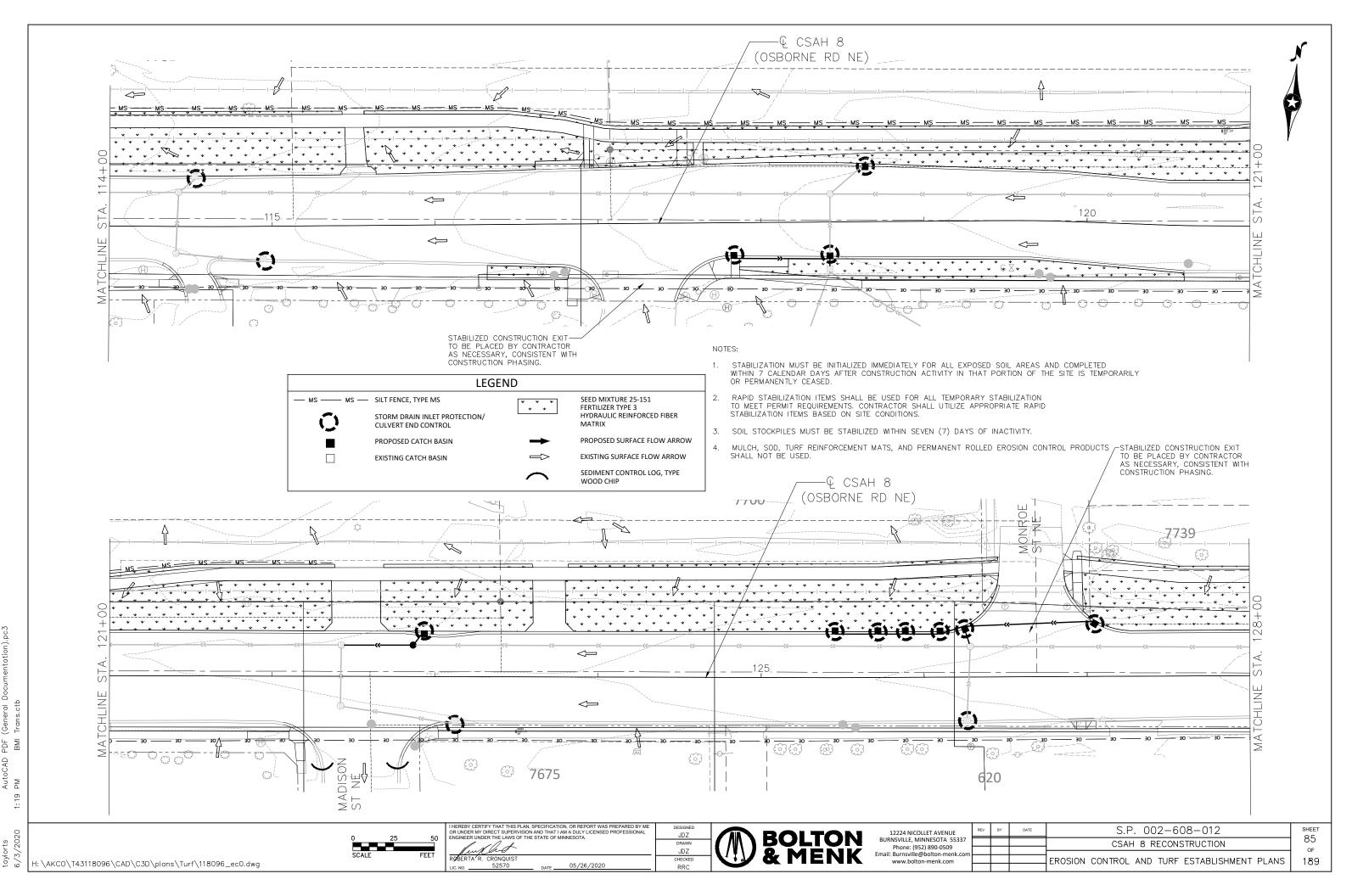
RECEIVING WATERS

SOIL TYPE SUMMARY

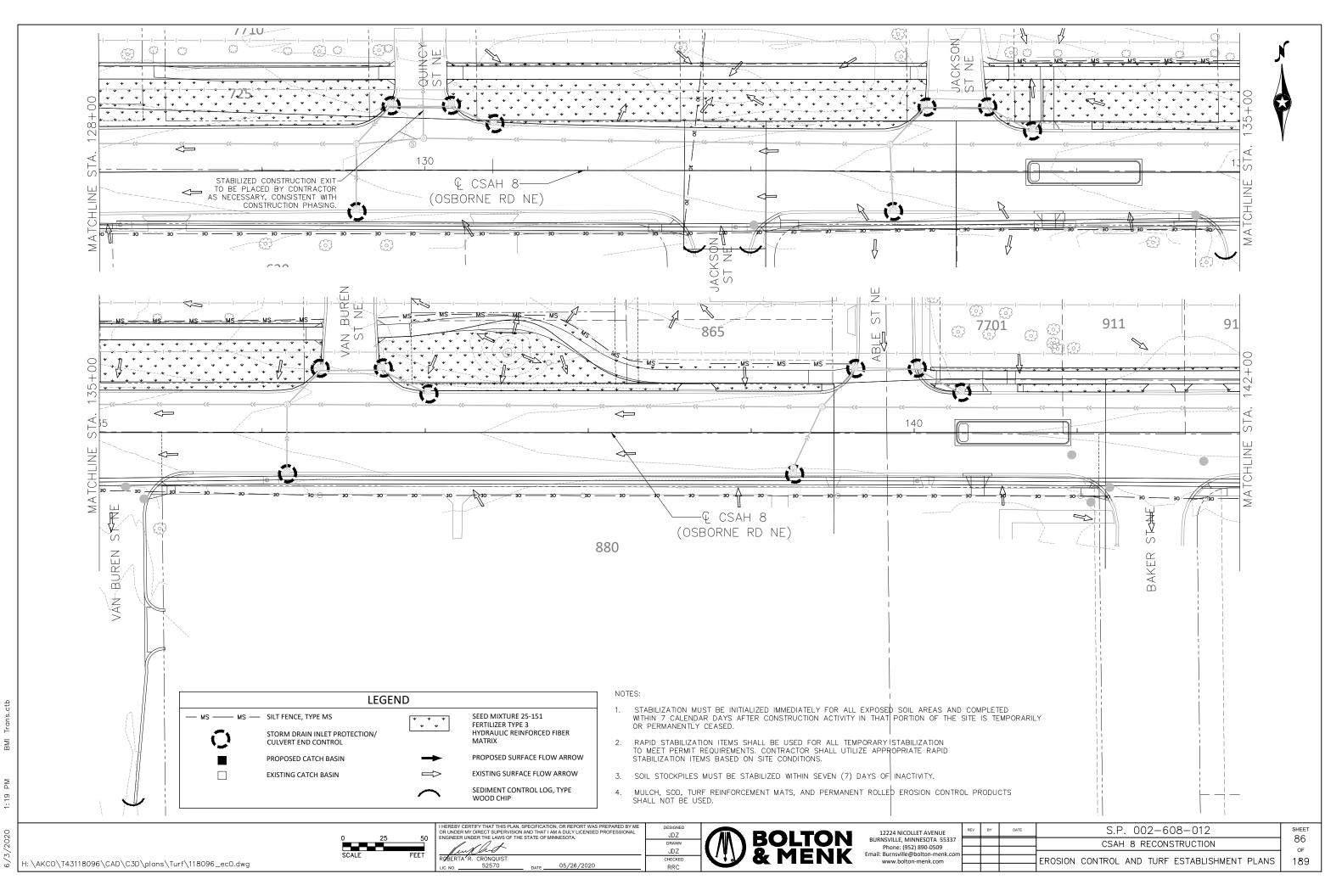

Map Unit Symbol	Soil Name	Hyd. Soil Group	Erodibility
Ui	Isanti	A/D	NHEL
Un	Urban Land		NHEL
UzB	Urban Land		NHEL

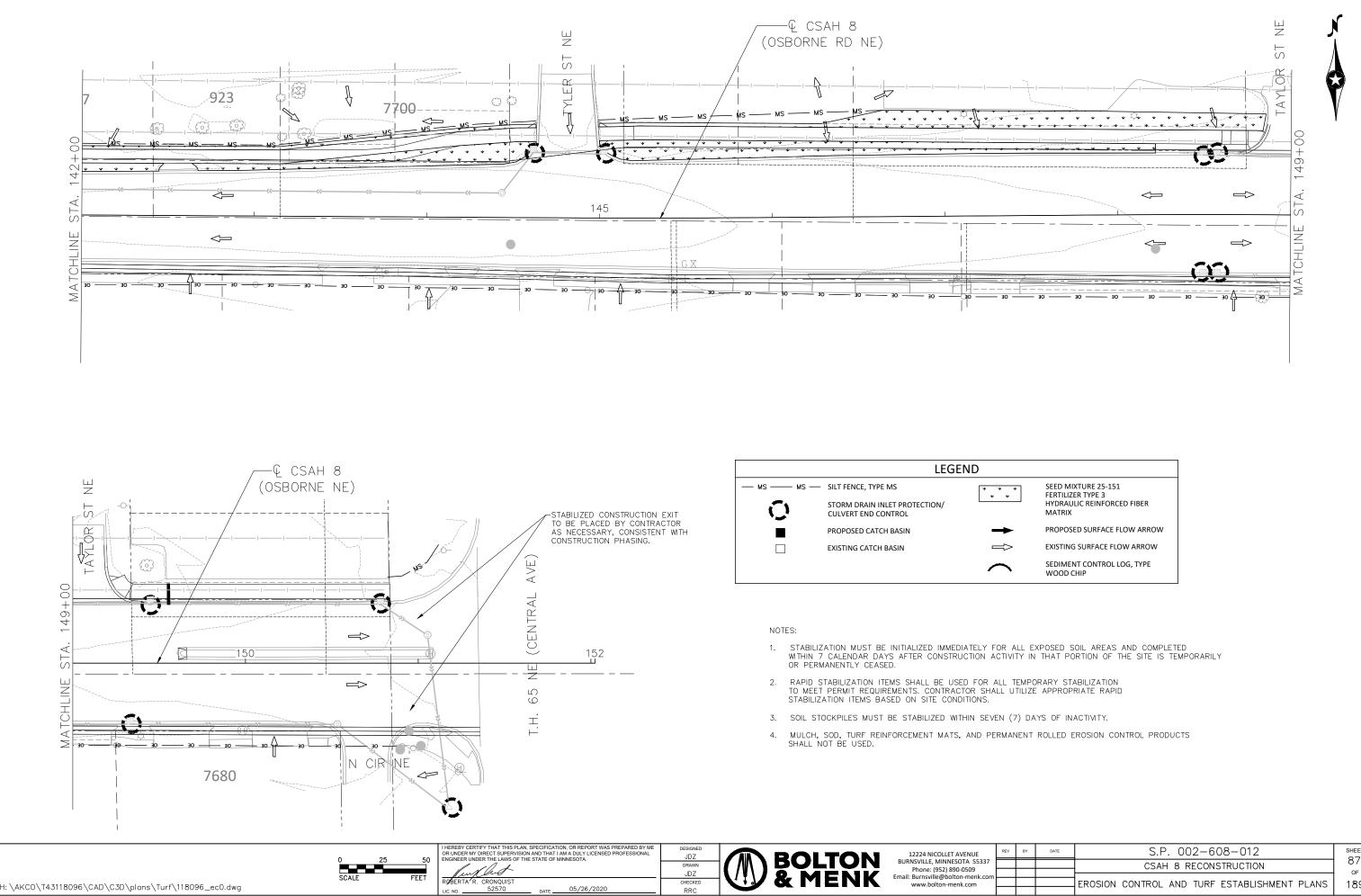
NHEL - Not Highly Erodible Land PHEL - Potentially Highly Erodible Land HEL - Highly Erodible Land

LOCATION OF SWPPP REQUIREMENTS IN PROJECT PLAN


DESCRIPTION	SHEET NO.
SITE MAP	1
DIRECTION OF FLOW	84-87
FINAL STABILIZATION	84-87
SOILS	83
DRAINAGE STRUCTURES	70-77
DRAINAGE TABULATION	78
STORM SEWER PLAN & PROFILE SHEETS	70-77
EROSION & SEDIMENT CONTROL DETAILS	81-82
EROSION CONTROL TABULATION	88
TURF ESTABLISHMENT TABULATION	88
NARRATIVE & NOTES	82

v	BY	DATE	S.P. 002-608-012	SHEET			
			CSAH 8 RECONSTRUCTION	83			
				OF			
			SWPPP AND WATER RESOURCES NOTES	189			
			SWITT AND WATER RESOURCES NOTES				




taylo 6/3,

							OF
	FROSION	CONTROL	AND	TURF	ESTABLISHMENT	PLANS	189
		C C C C C C C C C C C C C C C C C C C	0				100

ge PDF BMI oCAD Aut PM 1:19 0

*	SEED MIXTURE 25-151 FERTILIZER TYPE 3 HYDRAULIC REINFORCED FIBER MATRIX
•	PROPOSED SURFACE FLOW ARROW
>	EXISTING SURFACE FLOW ARROW
•	SEDIMENT CONTROL LOG, TYPE WOOD CHIP

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	87 0F
_			EROSION CONTROL AND TURF ESTABLISHMENT PLANS	^{0⊧} 189
-			EROSION CONTINUE AND TONE ESTABLISHMENT FEANS	103

EROSION CONTROL & TURF ESTABLISHMENT										н	
STATION TO STATION		LOCATION	RAPID STABILIZATION METHOD 3	SILT FENCE, TYPE MS (3)	STORM DRAIN INLET PROTECTION (3)	SEDIMENT CONTROL LOG TYPE WOOD CHIP (3)	SEEDING	SEED MIXTURE 25-151	FERTILIZER TYPE 3 (1)	HYDRAULIC REINFORCED FIBER MATRIX	
				M GALLON	LIN FT	EACH	LIN FT	ACRE	POUND	POUND	POUND
100+00	TO	107+00	RT/LT	3	100	10		0.1	27	27	521
107+00	TO	114+00	RT/LT	12	580		10	0.4	83	83	1618
114+00	TO	121+00	RT/LT	12	735	5		0.4	88	88	1722
121+00	TO	128+00	RT/LT	15	140	9	10	0.5	90	90	1762
128+00	TO	135+00	RT/LT	12	160	8	15	0.4	86	86	1684
135+00	TO	142+00	RT/LT	9	420	8	5	0.3	51	51	994
142+00	TO	149+00	RT/LT	6	430	6		0.2	35	35	676
149+00	TO	152+00	RT/LT		40	4					
			TOTALS	69	2605	50	40	2.3	460	460	8977

Notes:

(1) USE FERTILIZER TYPE 3 ANALYSIS 22-5-10 @ 200 LB/ACRE

(2) WEED SPRAY MIXTURE QUANTITY BASED ON 0.5 GAL/ACRE. MIXTURE SHALL BE 2, 4-D AMINE LABELED FOR BOTH AQUATIC AND R/W USE AND FORMULATED AT 3.8 LB ACID EQUIVALENT PER GALLON.

(3) INCLUDES ALL REQUIRED MAINTENANCE, REPLACEMENT, AND REMOVAL FOR THE DURATION OF THE PROJECT.

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	JDZ	
furthet	drawn JDZ	BURNSVILLE, MINNESOTA 5533 Phone: (952) 890-0509
ROBERTA R. CRONQUIST LIC. NO. 52570 DATE 05/26/2020	CHECKED RRC	WWW.bolton-menk.com

) –	
	H:\AKCO\T43118096\CAD\C3D\plans\Turf\118096_ec0.dwg

	REV	BY	DATE	S.P. 002-608-012	SHEET
				CSAH 8 RECONSTRUCTION	88
.					OF
"				EROSION CONTROL AND TURF ESTABLISHMENT PLANS	189
					100

STAGING AND TRAFFIC CONTROL NOTES

GENERAL INFORMATION

- 1. THE CONTRACTOR SHALL MAINTAIN ACCESS TO ALL RESIDENCES AND BUSINESSES AT ALL TIMES DURING CONSTRUCTION. (NOT SHOWN IN THE PLANS)
- 2. THE CONTRACTOR SHALL FURNISH, PLACE AND MAINTAIN THE DEVICES IN THIS STAGING AND TRAFFIC CONTROL PLAN UNLESS OTHERWISE NOTED. IN PLACE SIGNING MUST ALSO BE MAINTAINED OR TEMPORARILY RELOCATED DUE TO CONSTRUCTION ACTIVITIES AS SPECIFIED IN 1710.6 OF MNDOT'S STANDARD SPECIFICATIONS FOR CONSTRUCTION. REGULATORY SIGNS ARE CONSIDERED CRITICAL AND MUST BE TEMPORARILY RELOCATED. (THIS ACTION APPLIES FOR WORK FROM ONE STAGE TO ANOTHER. THIS IS NOT FINAL SIGN PLACEMENT WORK).
- 3. FIELD CONDITIONS MAY REQUIRE MODIFICATIONS OF THIS LAYOUT AS DEEMED NECESSARY BY THE ENGINEER.
- 4. ALL DISTANCES ARE APPROXIMATE.
- 5. THE CONTRACTOR IS RESPONSIBLE FOR PROTECTING ALL WORK AREAS NEAR TRAFFIC IN ACCORDANCE WITH THE MNMUTCD.
- 6. PRIOR TO EACH ROADWAY OPENING TO TRAFFIC, THE CONTRACTOR SHALL PLACE THE FINAL SIGNING AND PAVEMENT MARKINGS REQUIRED TO SAFELY OPEN THAT ROAD TO TRAFFIC, UNLESS OTHERWISE IDENTIFIED IN THESE PLANS. THIS WORK SHALL BE COMPLETED ON OR BEFORE THE DATE OF OPENING AS APPROVED BY THE ENGINEER
- 7. SIGN PLACEMENTS SHALL NOT OBSTRUCT EXISTING SIGNS.
- 8. SOME CONSTRUCTION MAY REQUIRE TEMPORARY LANE CLOSURES NOT SHOWN IN THE PLANS. REFER TO THE MNDOT TEMPORARY TRAFFIC CONTROL ZONE LAYOUTS FIELD MANUAL FOR STANDARD LANE CLOSURE SIGNAGE. TRAFFIC CONTROL PLANS AND ITEMS FOR TEMPORARY CLOSURES ARE INCIDENTAL
- 9. THE ITEM "TRAFFIC CONTROL" COVERS ALL DEVICES SHOWN ON THE PLAN SHEETS AND OTHER SETUPS REQUIRED BY THE CONTRACTOR'S OPERATIONS. THE CONTRACTOR IS RESPONSIBLE FOR DETERMINING ACTUAL QUANTITIES NEEDED FOR THE PROJECT.
- 10. IF THE CONTRACTOR DECIDES TO PERFORM THE CONSTRUCTION WORK IN A SEQUENCE OR MANNER OTHER THAN SHOWN IN THIS STAGING AND TRAFFIC CONTROL PLAN, THE CONTRACTOR SHALL OBTAIN APPROVAL FROM THE ENGINEER FOR REVISED PLAN PRIOR TO IMPLEMENTATION
- 11. ALL TRAFFIC CONTROL DEVICES SHALL BE PLACED IN ACCORDANCE WITH THE MN MUTCD.
- 12. THE REMOVAL OF TEMPORARY TRAFFIC CONTROL SHALL BE INCIDENTAL TO TRAFFIC CONTROL.
- 13. ALL PLAN SHEETS ARE TO SCALE UNLESS OTHERWISE NOTED WITH DISTANCES SPECIFIED
- 14. SEE SPECIAL PROVISIONS FOR ADDITIONAL TRAFFIC CONTROL REQUIREMENTS.
- 15. SEE SPECIAL PROVISIONS FOR ADDITIONAL COMPLETION DATES AND STAGING REQUIREMENTS.
- 16. ALL TRAFFIC CONTROL DEVICES SHALL CONFORM TO THE MOST RECENT EDITION OF THE MINNESOTA MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, INCLUDING "FIELD MANUAL FOR TEMPORARY TRAFFIC CONTROL ZONE LAYOUTS."

PAVEMENT MARKING:

- 1. OBLITERATE ANY CONFLICTING PAVEMENT MARKINGS AS DIRECTED BY THE ENGINEER.
- 2. PAINT, POLYMER LANE TAPE AND/OR TRPM'S ARE ACCEPTABLE TEMPORARY STRIPING ALTERNATIVES ACCORDING TO ACTUAL CONDITIONS ENCOUNTERED AS DIRECTED BY THE ENGINEER. GENERALLY, ONLY PAINT WILL BE USED BEFORE MAY 1ST OR WHEN THE OTHER MANUFACTURER'S SPECIFICATIONS CAN NOT BE MET.
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE LOCATION AND INSTALLATION OF TEMPORARY AND FINAL STRIPING. MNDOT TRAFFIC PERSONNEL MAY ASSIST IN THE SPOTTING OF TRANSITION AREAS, GORES AND TAPERS.

SIGNING

- 1. ALL TRAFFIC CONTROL DEVICES ON ROADS OPEN TO TRAFFIC THAT ARE NOT CONSISTENT WITH TRAFFIC OPERATION SHALL BE COVERED, REMOVED, OR REVISED AS DIRECTED BY THE ENGINEER.
- 2. WHEN SIGNS ARE INSTALLED, THEY SHALL BE MOUNTED ON POSTS DRIVEN INTO THE GROUND AT THE PROPER HEIGHT AND LATERAL OFFSET AS DETAILED IN THE TEMP SIGN FRAMING AND INSTALLATION DETAILS IN THE PLAN. IF THIS IS NOT POSSIBLE, THEY WILL BE MOUNTED ON PORTABLE SUPPORTS AS APPROVED BY THE ENGINEER. WHEN THE SIGNS ARE REMOVED THE SIGN POSTS SHALL ALSO BE REMOVED AS SOON AS POSSIBLE.
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY EXTRA SIGNING NEEDED TO FACILITATE TRAFFIC SWITCHES OR FOR TRANSITIONING TRAFFIC FROM ONE STAGE TO ANOTHER.
- 4. ALL ORANGE WARNING AND ORANGE GUIDE SIGNS SHALL BE FABRICATED WITH SIGN SHEETING MATERIAL AS LISTED ON THE MNDOT APPROVED PRODUCT LIST FOR "SHEETING FOR RIGID TEMPORARY WORK ZONE SIGNS."
- 5. BARRICADES SHALL BE FABRICATED WITH SIGN SHEETING MATERIAL AS LISTED ON THE MNDOT APPROVED PRODUCT LIST FOR BARRICADE SHEETING. NOTE THAT ASTM TYPE VII SHEETING IS NOT ALLOWED ON BARRICADES AFTER JANUARY 1, 2010.
- 6. THE CONTRACTOR SHALL COORDINATE THE PLACEMENT OF THE FINAL SIGNS TO ASSURE THAT THE FINAL SIGNS ARE PLACED PRIOR TO OPENING ALL LANES, OR PROVIDE TEMPORARY SIGNING AT THEIR EXPENSE UNTIL THE FINAL SIGNING IS PLACED.
- 7. THE CONTRACTOR SHALL COVER, CHANGE, OR REMOVE INPLACE SIGNS, THAT CONFLICT WITH THE TRAFFIC PATTERNS AS DIRECTED BY THE ENGINEER. ALL SIGNS ALTERED BY THE CONTRACTOR SHALL BE RETURNED TO THEIR ORIGINAL STATUS WHEN NORMAL PATTERNS ARE RESTORED. ALL SIGNS COVERED WITH OTHER SIGN PANELS OR BLANKS SHALL HAVE NYLON WASHERS SPACED BETWEEN THE SIGN AND THE PANEL
- 8. REFER TO TEMPORARY TRAFFIC CONTROL ZONE LAYOUTS FIELD MANUAL DISTANCE CHARTS FOR EXACT SIGN SPACING BASED ON POSTED SPEED LIMITS.

CONSTRUCTION INFORMATION SIGNING

- 1. THE CONTRACTOR SHALL USE CONSTRUCTION INFORMATION SIGNING AS SHOWN IN THE PLAN AND WHICH ARE TO BE USED AS FOLLOWS: CONSTRUCTION INFORMATION SIGNING NOT VISIBLE TO THE MOTORING PUBLIC ONCE WORK BEGINS WILL BE ENGINEER
- NOT SHOWN IN THE PLAN.
- SHOULD STAY INPLACE UNTIL ALL WORK HAS BEEN COMPLETED.
- - -NORTHBOUND & SOUTHBOUND T.H. 47
 - -NORTHBOUND & SOUTHBOUND T.H. 65
 - -EASTBOUND C.S.A.H. 8, WEST OF T.H. 47 -WESTBOUND C.S.A.H. 8. EAST OF T.H. 65

STAGING NOTES

- CONSTRUCTION.
- MANUAL FOR STANDARD RIGHT LANE AND LEFT LANE CLOSURE SIGNAGE.
- 3. CONTRACTOR TO COORDINATE WORK ON SIGNALS AT T.H. 47/C.S.A.H. 8 AND T.H. 65/C.S.AH. 8 WITH MNDOT
- 5 INSTALL TEMPORARY CAMERAS FOR LANE DETECTION. SEE SIGNAL PLANS.
- INSTALLED
- CONTRACTOR TO MAINTAIN 11' WIDTH TRAVEL LANES.
- CROSSINGS AND FACILITIES.

STAGE 1:

- STAGE 1 WORK CONSISTS OF THE RECONSTRUCTION OF EASTBOUND LANES OF C.S.A.H. 8.
- REMOVAL)
- 5. WESTBOUND LANES
- 6. CONTRACTOR IS REQUIRED TO MAINTAIN ONE LANE OF TRAVEL FOR EACH DIRECTION OF C.S.A.H. 8.

STAGE 2:

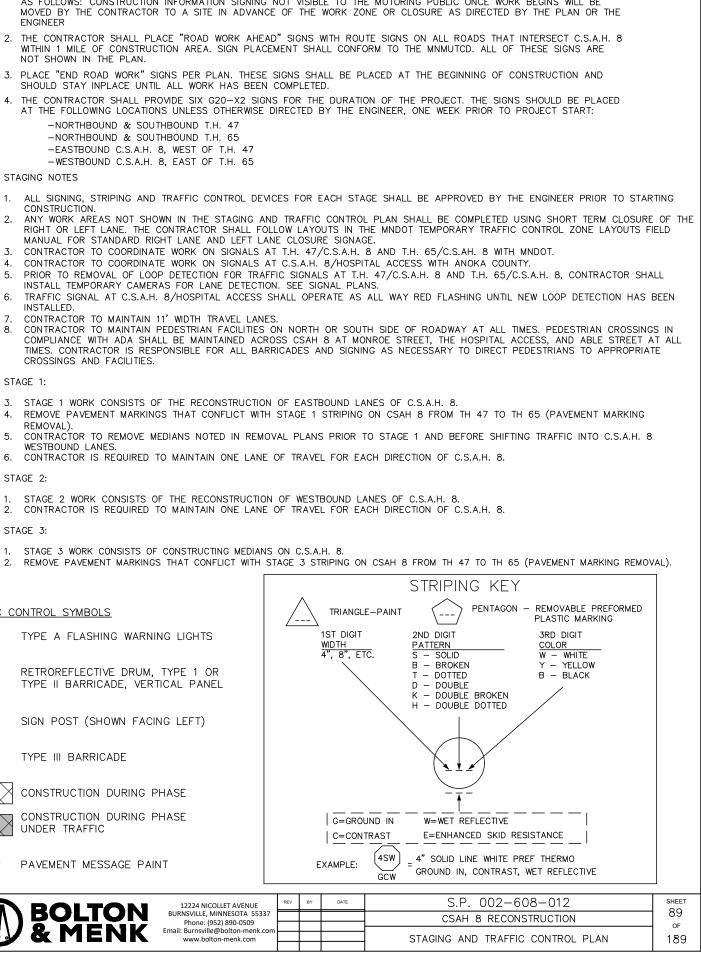
1. STAGE 2 WORK CONSISTS OF THE RECONSTRUCTION OF WESTBOUND LANES OF C.S.A.H. 8.

STAGE 3

- STAGE 3 WORK CONSISTS OF CONSTRUCTING MEDIANS ON C.S.A.H. 8.

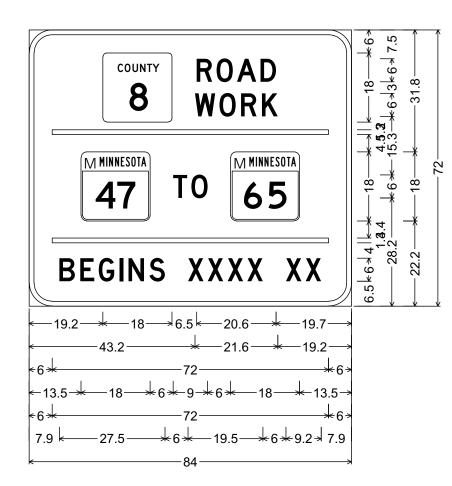
TRAFFIC CONTROL SYMBOLS

TYPE A FLASHING WARNING LIGHTS


- RETROREFLECTIVE DRUM, TYPE 1 OR TYPE II BARRICADE, VERTICAL PANEL
- SIGN POST (SHOWN FACING LEFT)
- TYPE III BARRICADE

IJ PAVEMENT MESSAGE PAINT

	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MOJRECT SUPPRISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DESIGNED ZAP DRAWN ZAP	BOLTON BOLTON 12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 Emil: Burnsville@bolton-menk.com
t:\AKCO\T43118096\CAD\C3D\plans\Stage&TC\118096_stg_001 - Plan F - G.dwg	BRYAN T. NEMETH J LIC. NO	CHECKED B TN	



	5	FEMPORA	RY TRAF	FIC CON	ITROL			I
	2102	2564	2581	2581	2581	2582	2582	2582
STAGE	PAVEMENT MARKING REMOVAL	RAISED PAVEMENT MARKER TEMPORARY	REMOVABLE PREFORMED PAVEMENT MARKING TAPE	REMOVABLE PREFORMED PLASTIC MASK (BLACK)	REMOVABLE PREFORMED PLASTIC MASK (BLACK) (1)	4" SOLID LINE PAINT	4" DOUBLE SOLID LINE PAINT	PAVEMENT MESSAGE PAINT (2)
	LIN FT	EACH	LIN FT	LIN FT	SQ FT	LIN FT	LIN FT	SQ FT
C.S.A.H. 8: S.P. 002-608-012								
STAGE 1	8600	416	2775	400	96	11600	3000	32
SUBTOTALS	8600	416	2775	400	96	11600	3000	32
STAGE 2	4680	490	17330					32
SUBTOTALS	4680	490	17330					32
STAGE 3	3900		8800					16
SUBTOTALS	3900		8800					16
TOTALS	17180	906	28905	400	96	11600	3000	80

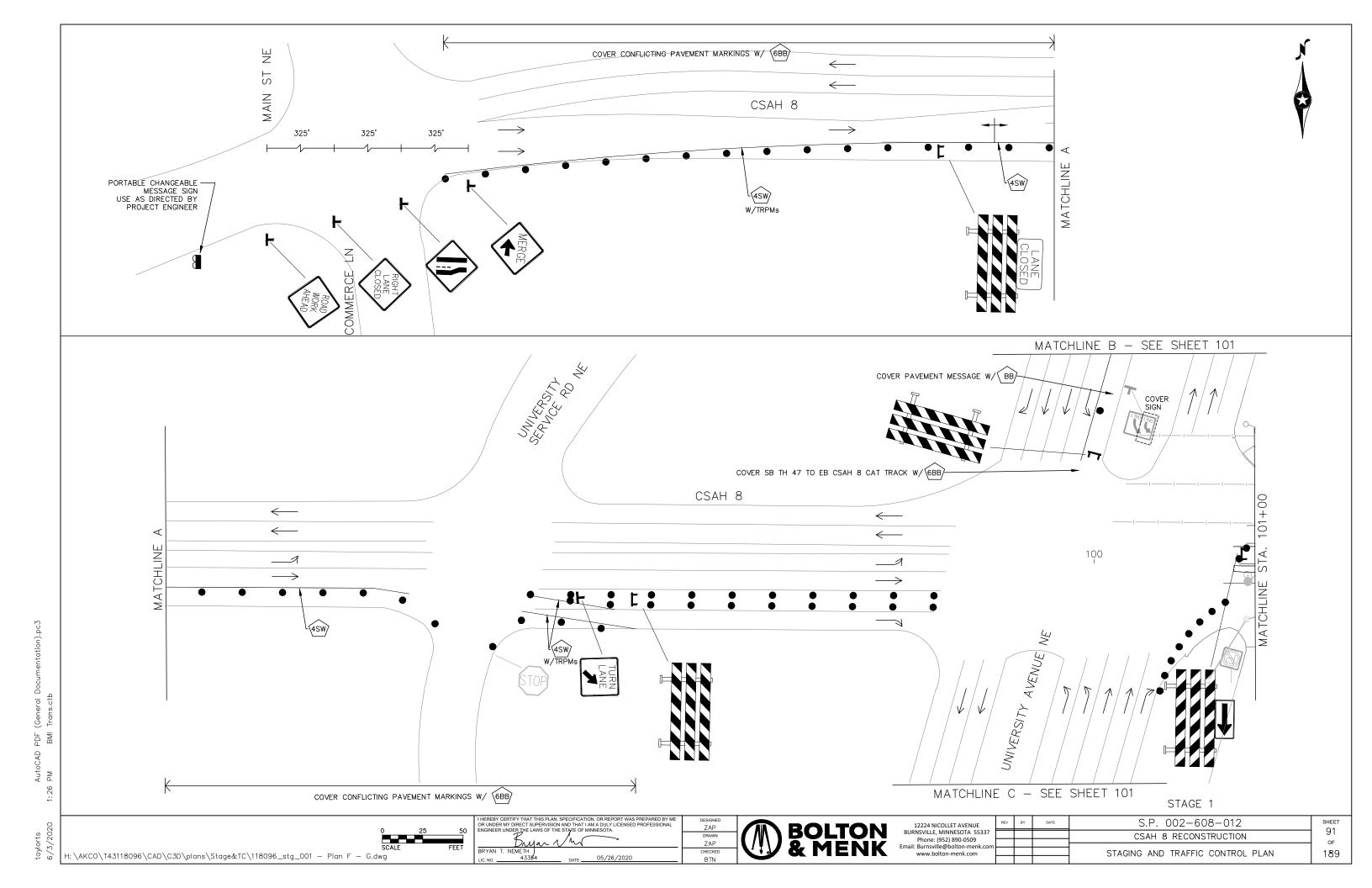
NOTES:

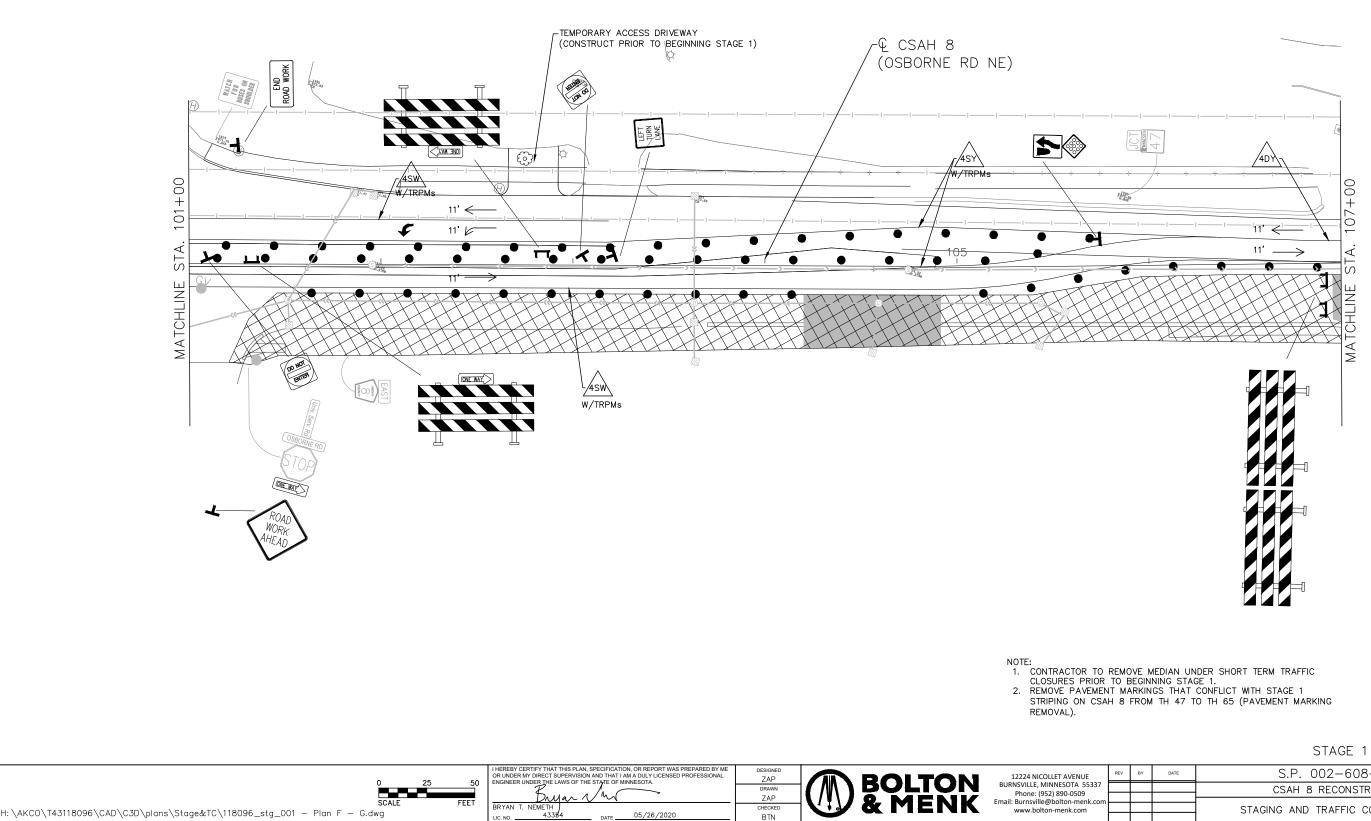
(1) LEFT ARROWS ARE 48 SQ FT.

(2) LEFT ARROWS ARE 16 SQ FT.

G40-X2(1d)

6.0" Radius, 1.3" Border, Black on Orange; Rounded Rectangle 1.0" Radius White; [ROAD] D; [WORK] D; State Highway 47 M1-5b; [TO] D; State Highway 65 M1-5b; [BEGINS] D; [XXXX XX] D;

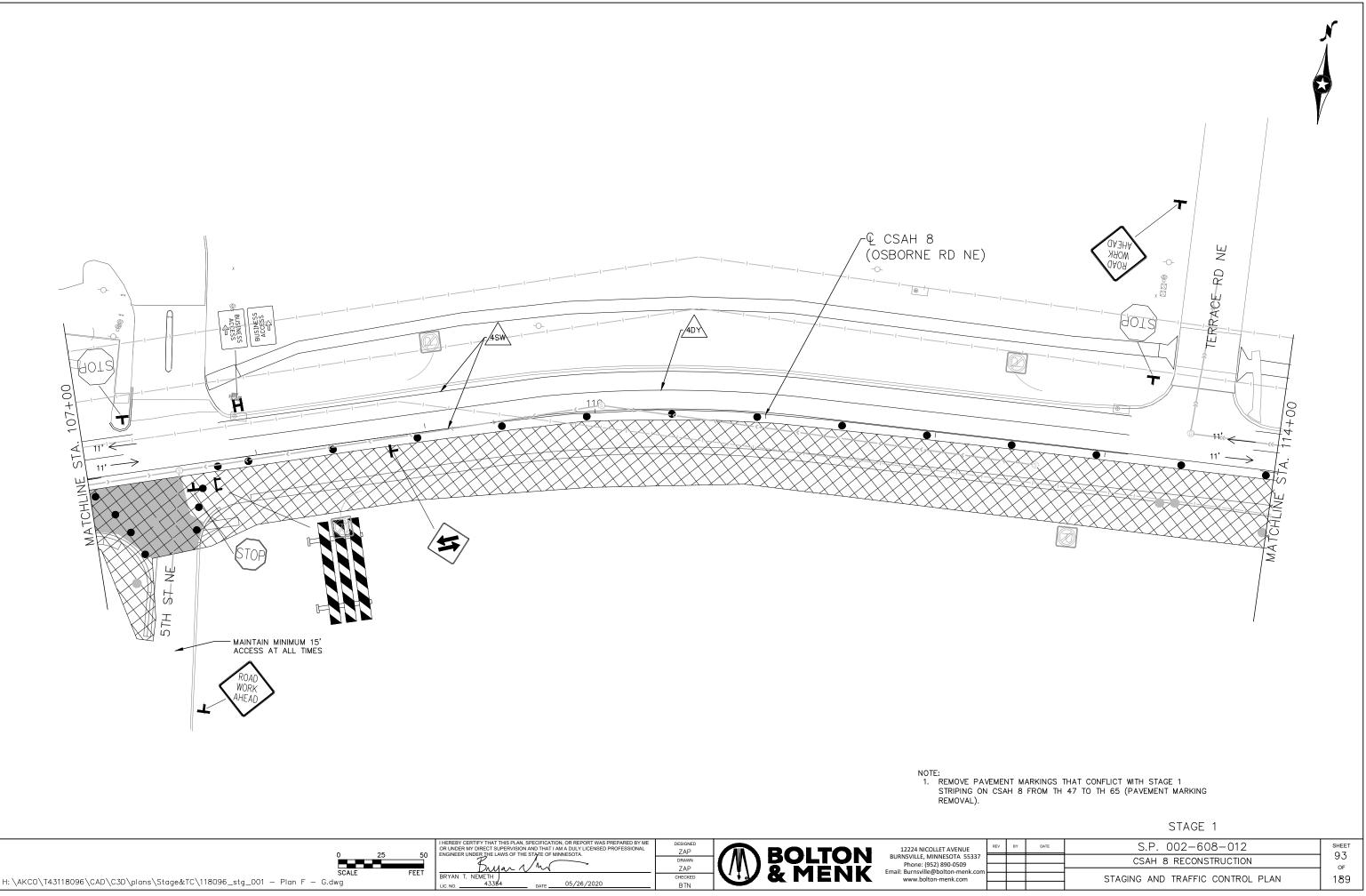

Table of letter and object lefts.

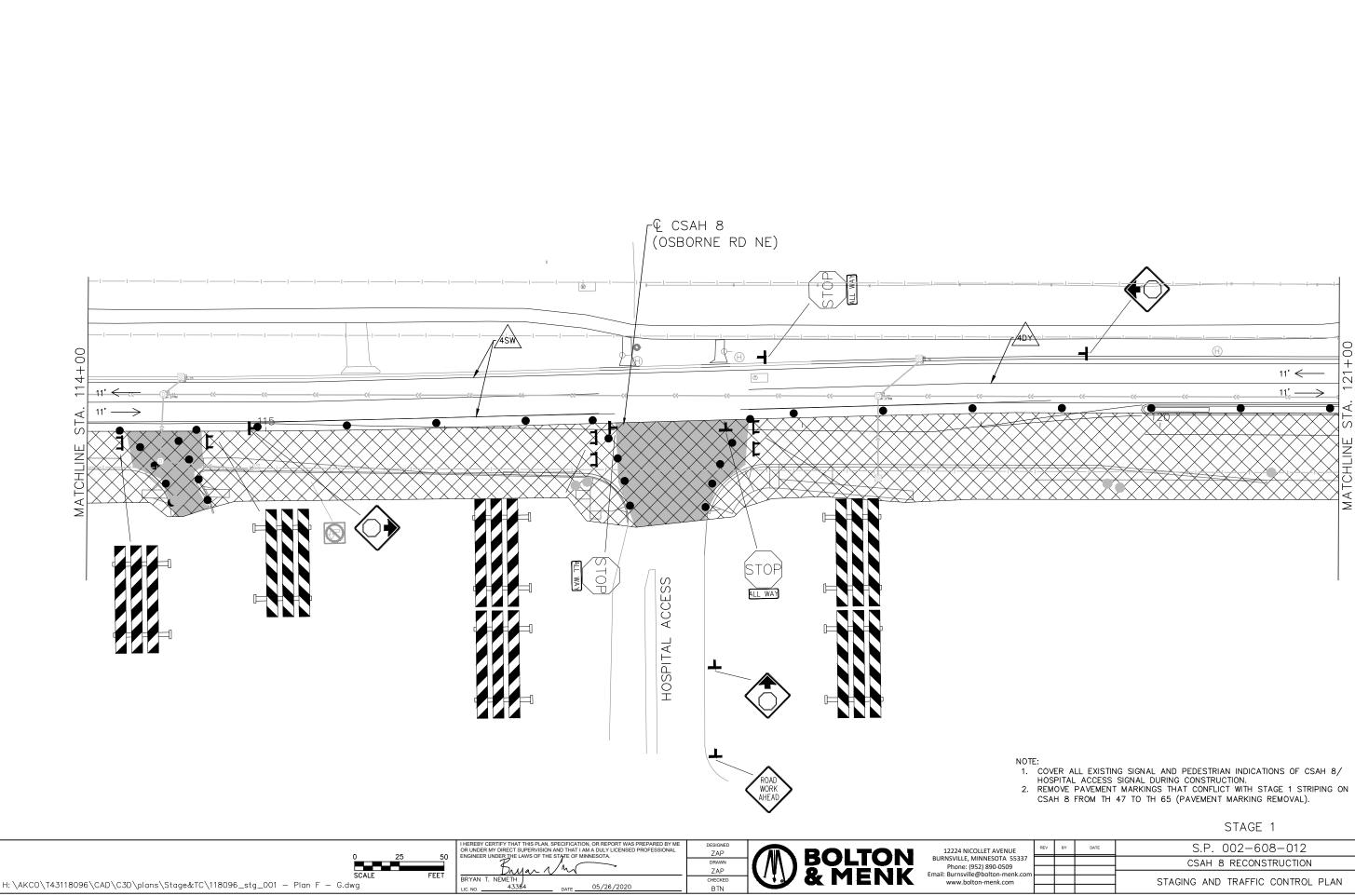

8	R	0		Α	_	D	_			
19.2	43.7	7 48.	8	54.	2	60.	3			
W	0	R		Κ						
43.2	49.6	5 55	.2	60.	7					
6.0										
47	Т	0		65						
13.5	37.5	5 42.	3	52.	5					
6.0										
В	E	G	Ι		Ν		S			
7.9	13.4	18.1	2	3.6	2	5.9	3	1.4		
	X	X		Х		X		X		Х
	41.4	4 46.	5	51.	7	56.	9	66.	9	72.1

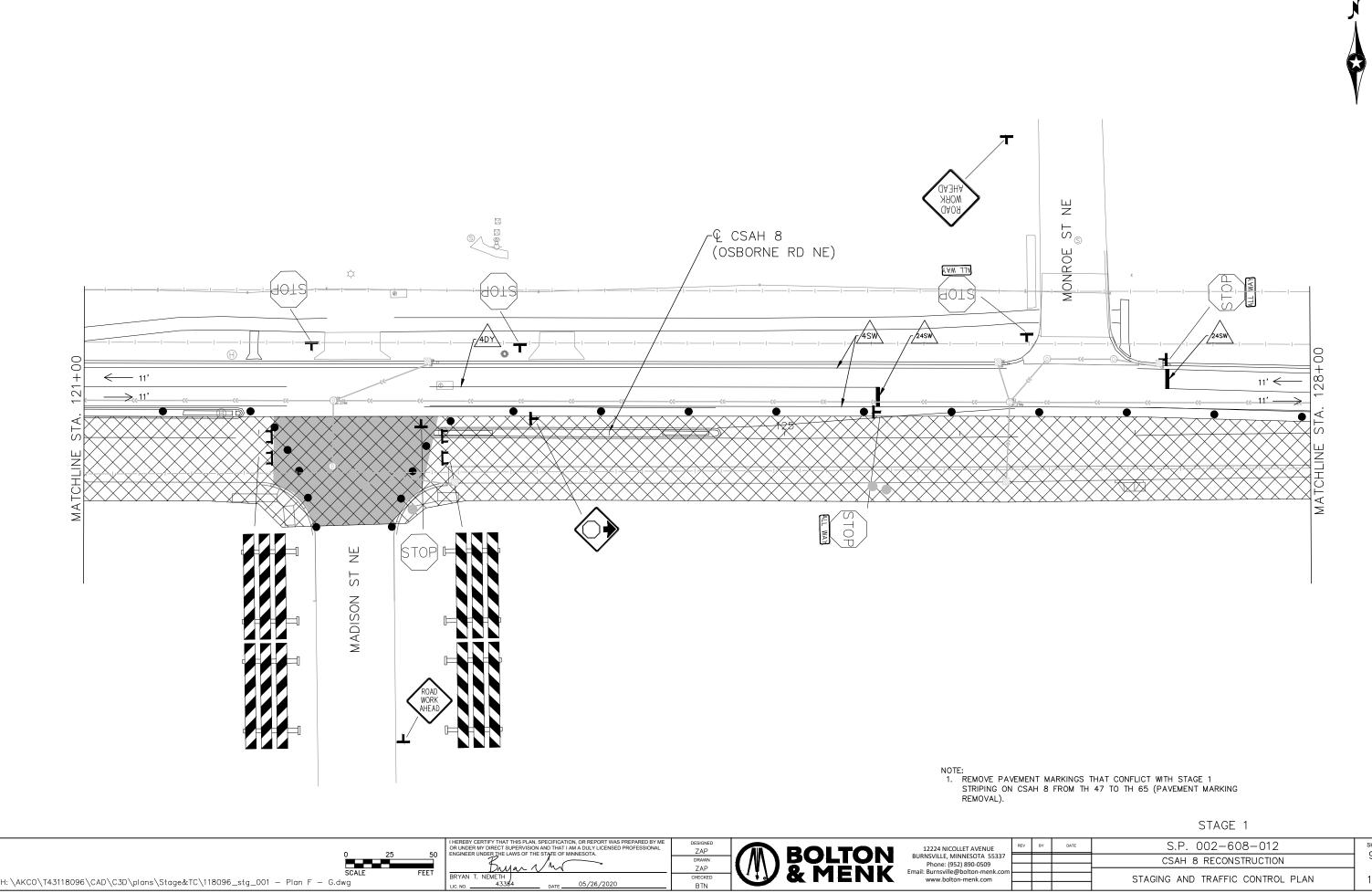
H: \AKCO\T43118096\CAD\C3D\plans\Stage&TC\118096_stg_001 - Plan F - G.dwg		BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com www.bolton-menk.com	
---	--	--	--

zacharypa 6/12/2020

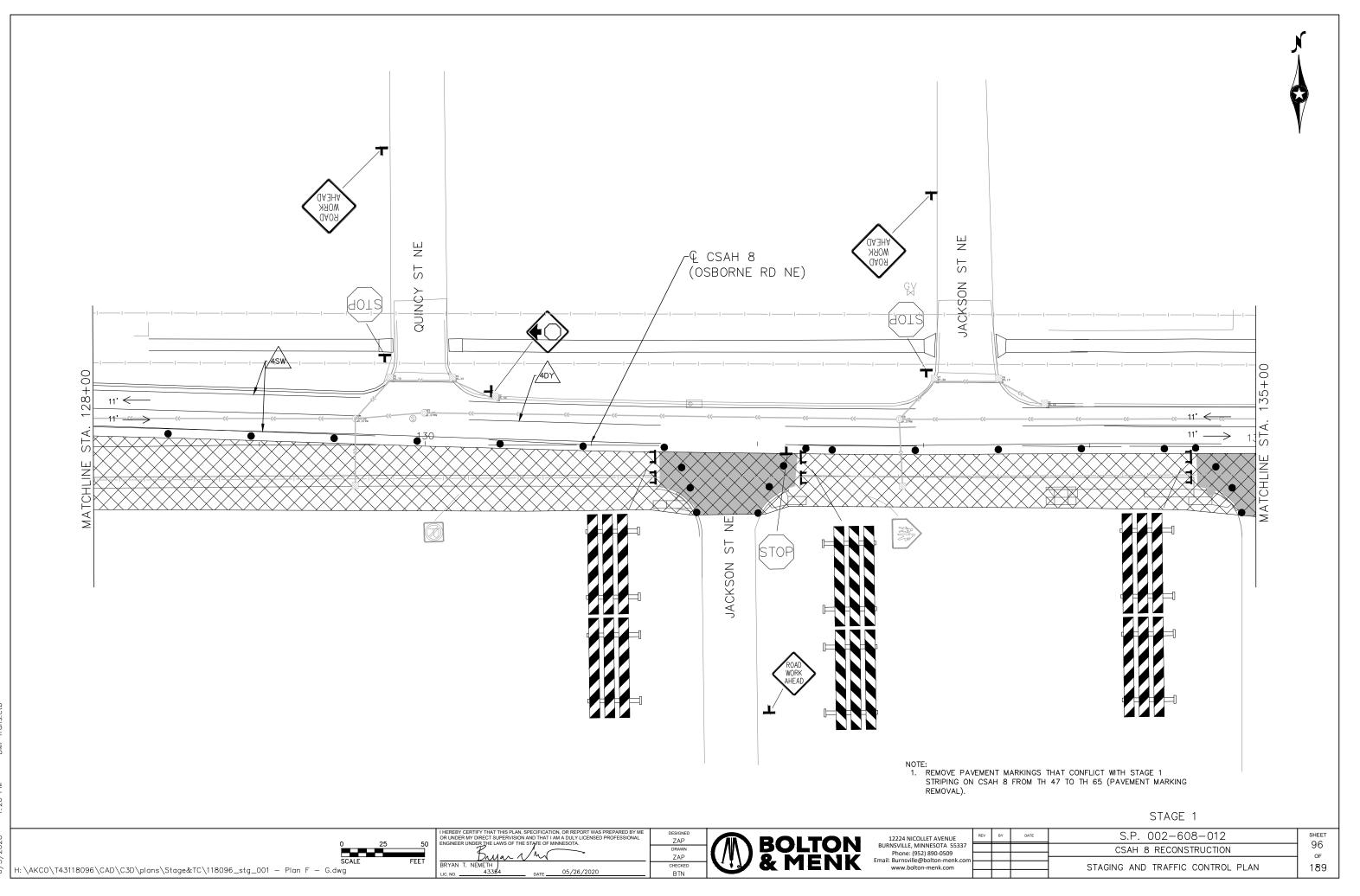
EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	90 OF
			STAGING AND TRAFFIC CONTROL PLAN	 189
				105



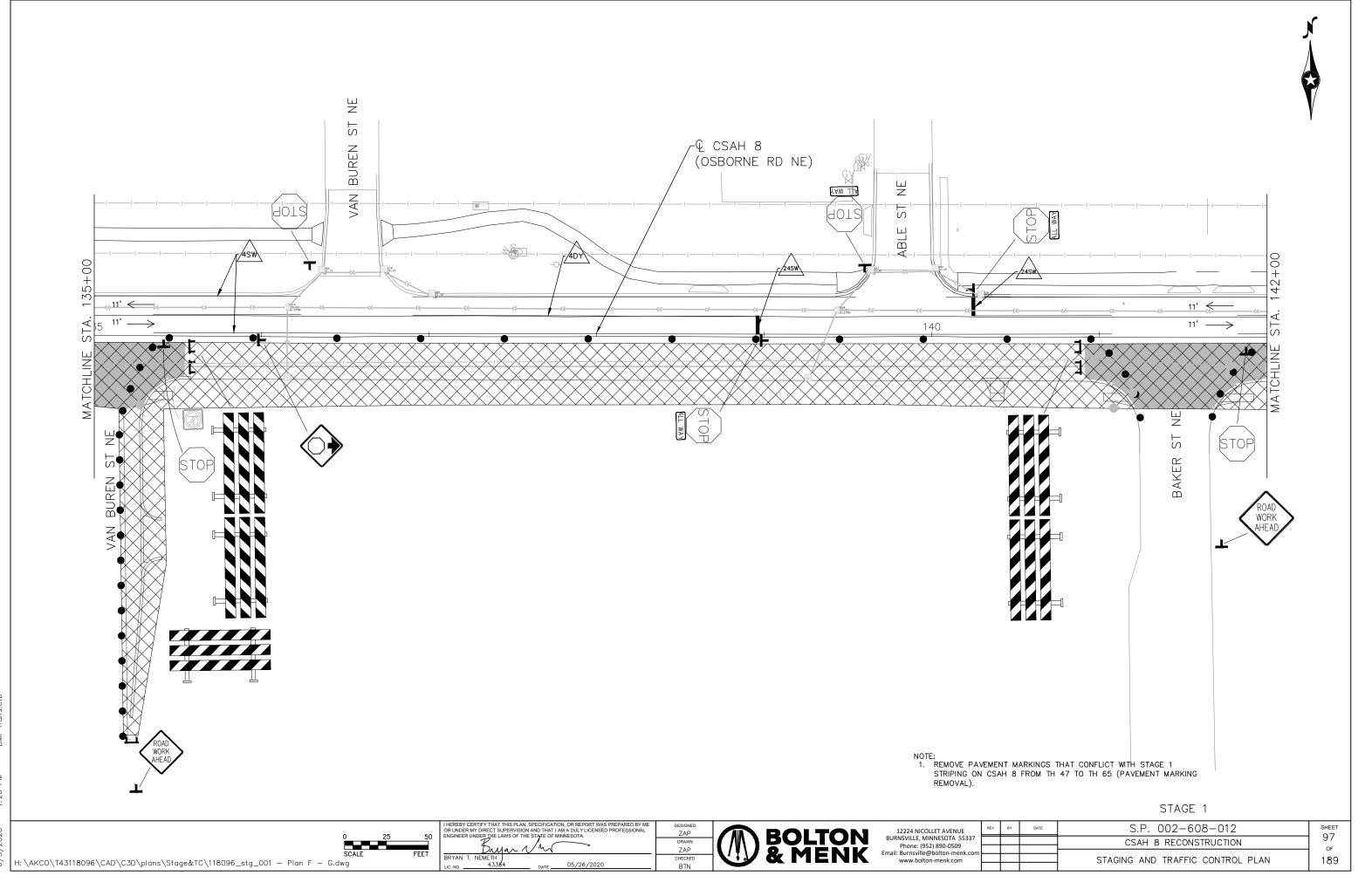

entation).pc3 Doc AutoCAD PDF (General [1:26 PM BMI Trans.ctb taylorts 6/3/2020

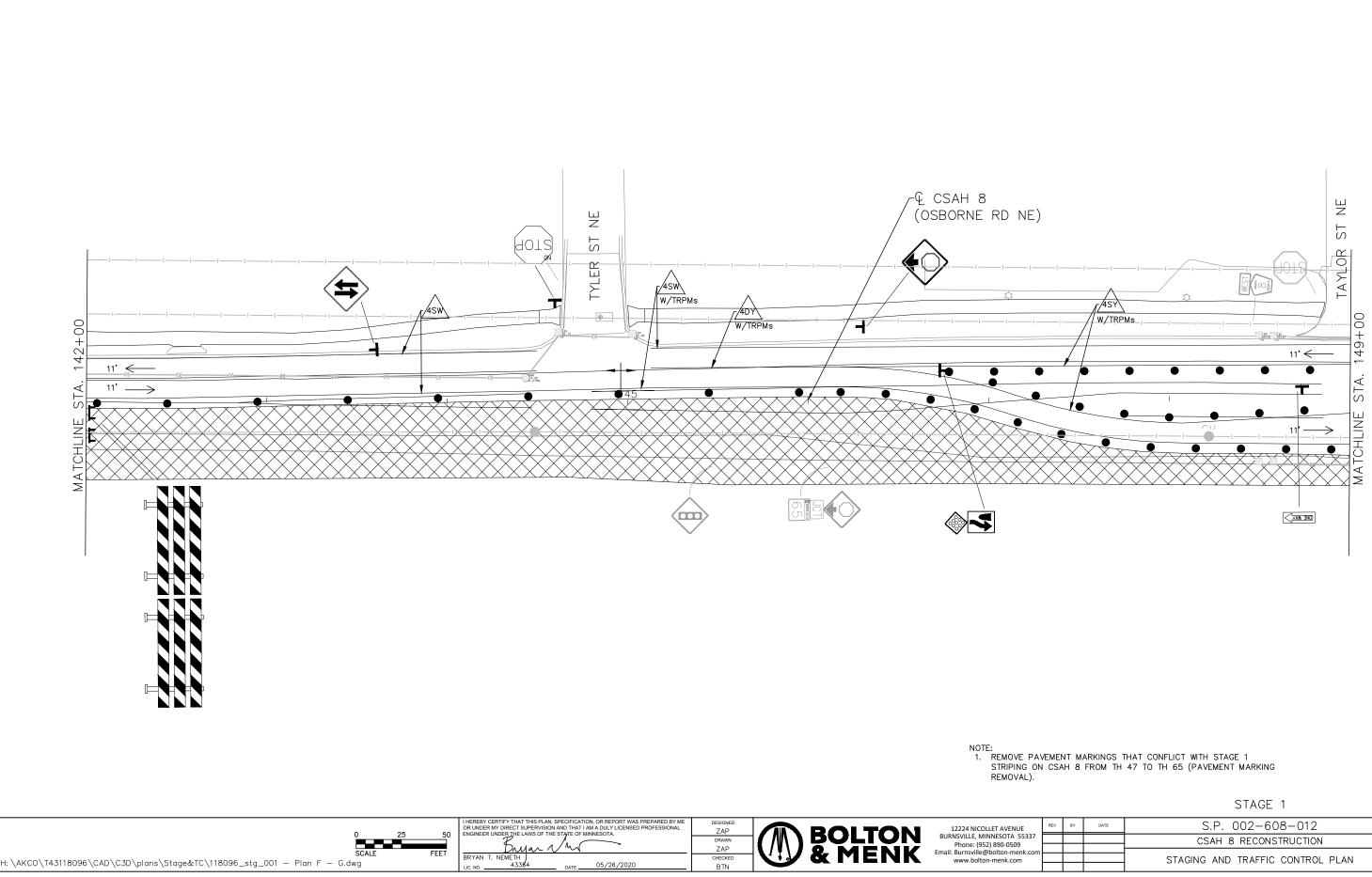

EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	92
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100

EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	93
			STAGING AND TRAFFIC CONTROL PLAN	₀ 189
			STAGING AND INATTIC CONTINUE FEAN	109

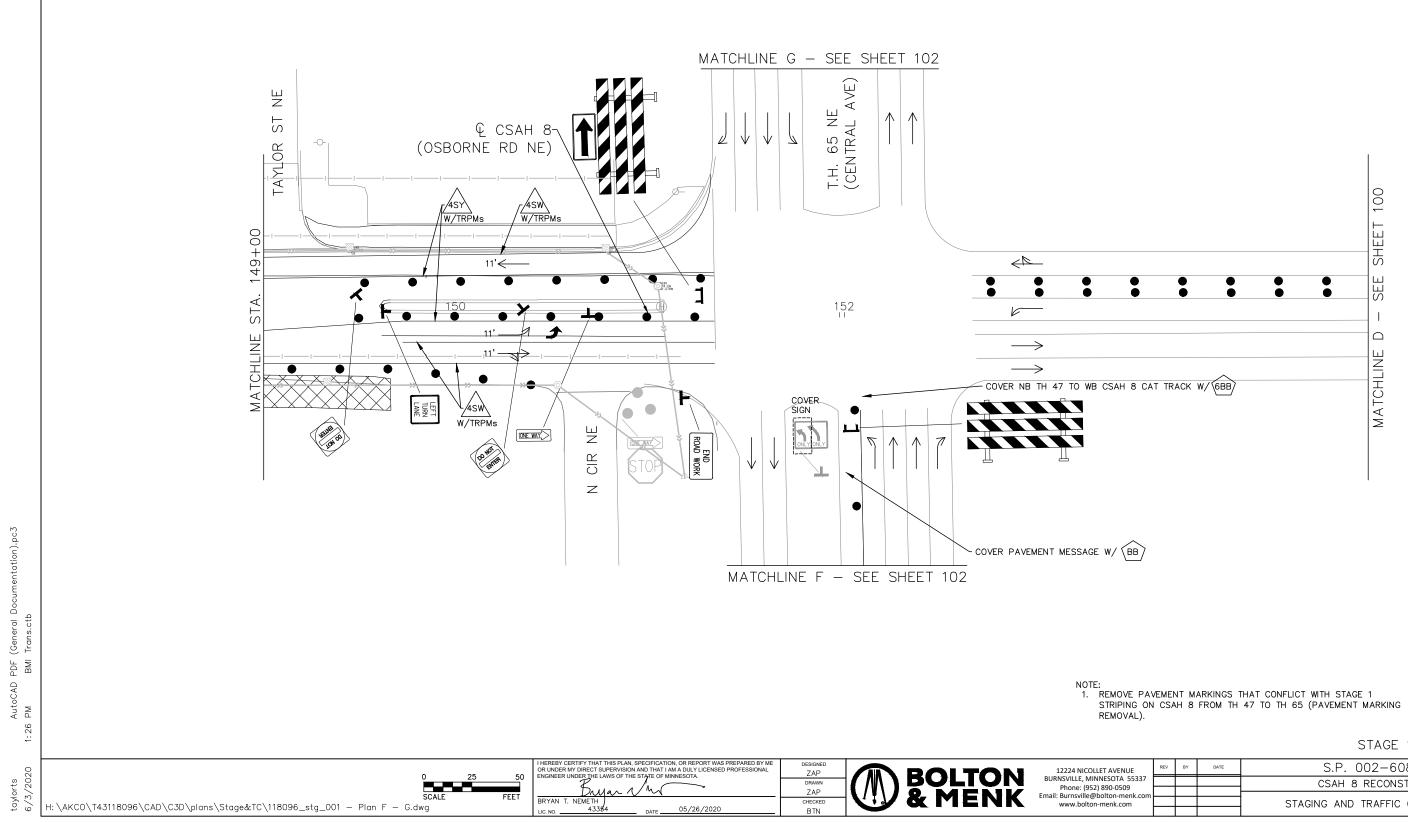


EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	94
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100

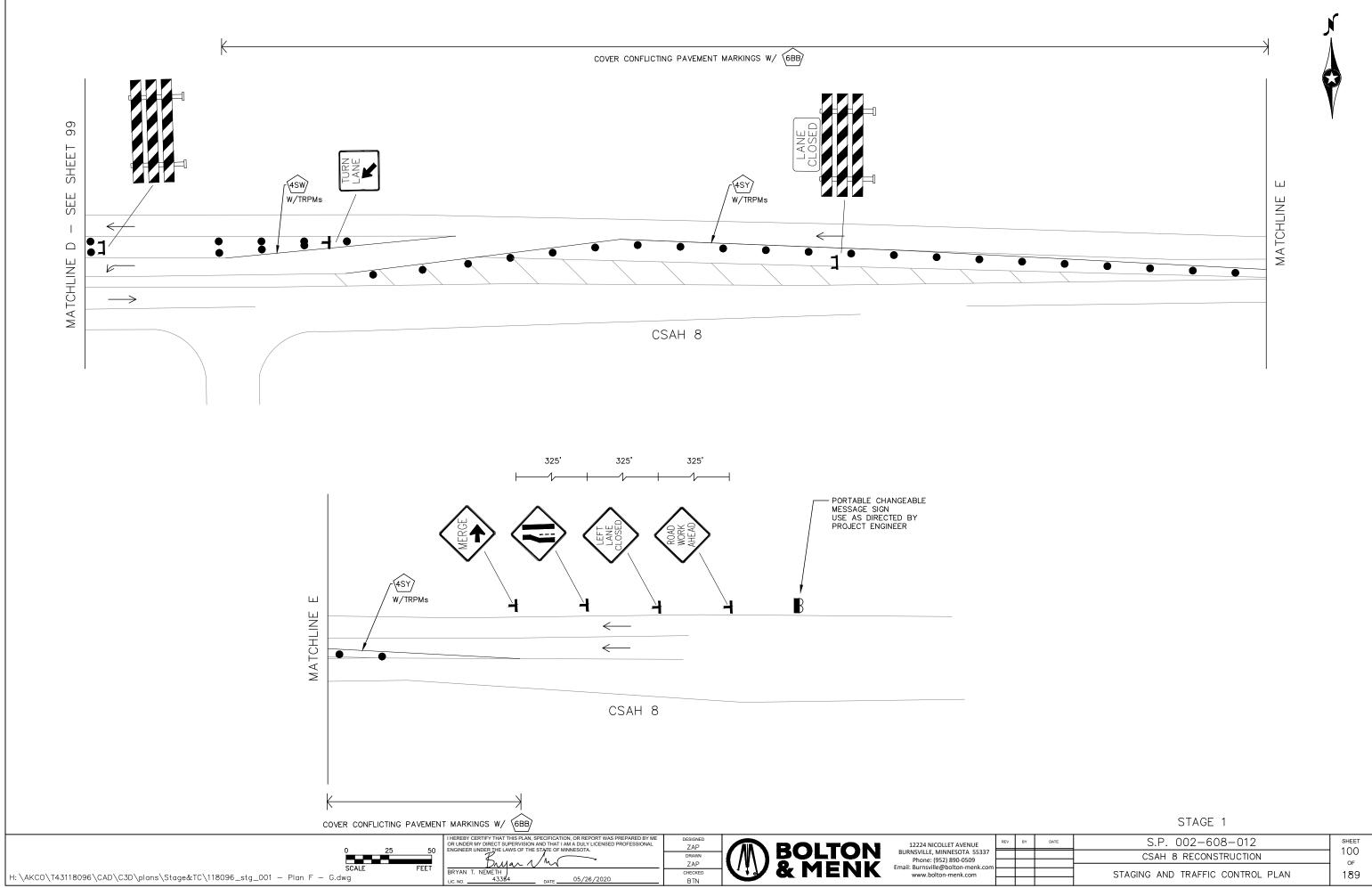


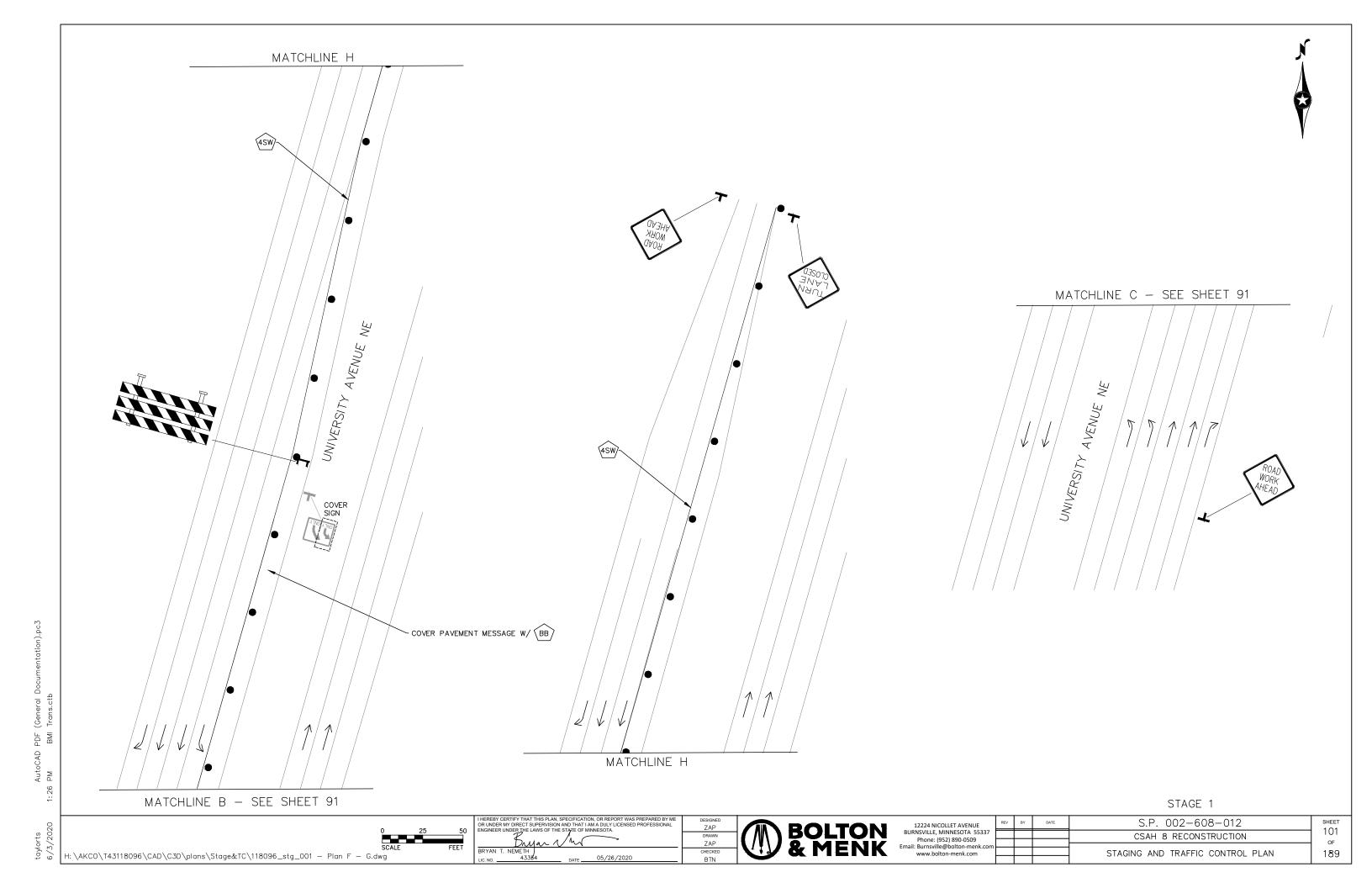

entation).pc3 Doc AutoCAD PDF (General C 1:26 PM BMI Trans.ctb taylorts 6/3/2020

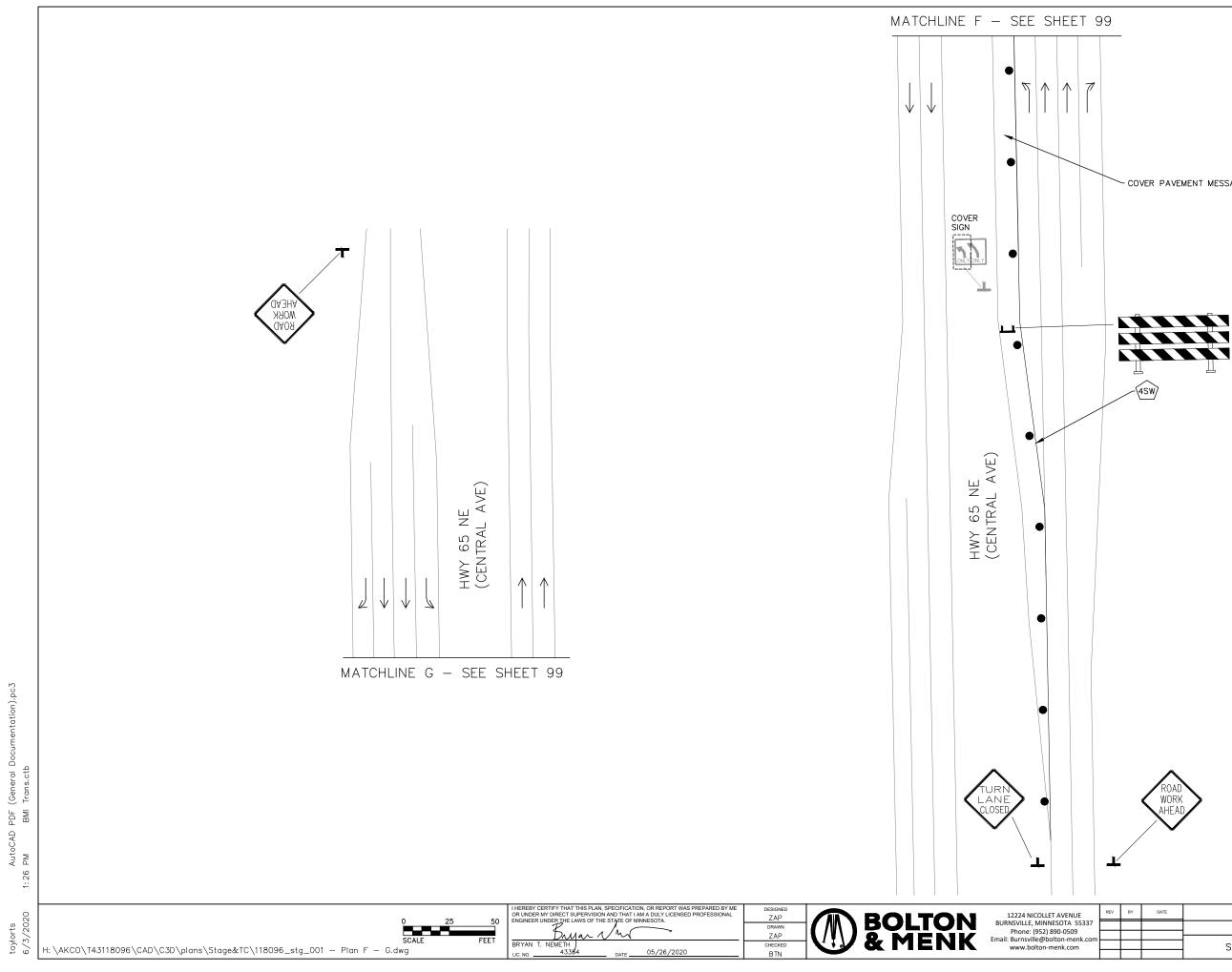
V	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	95
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100



taylorts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:26 PM BMI Trans.ctb

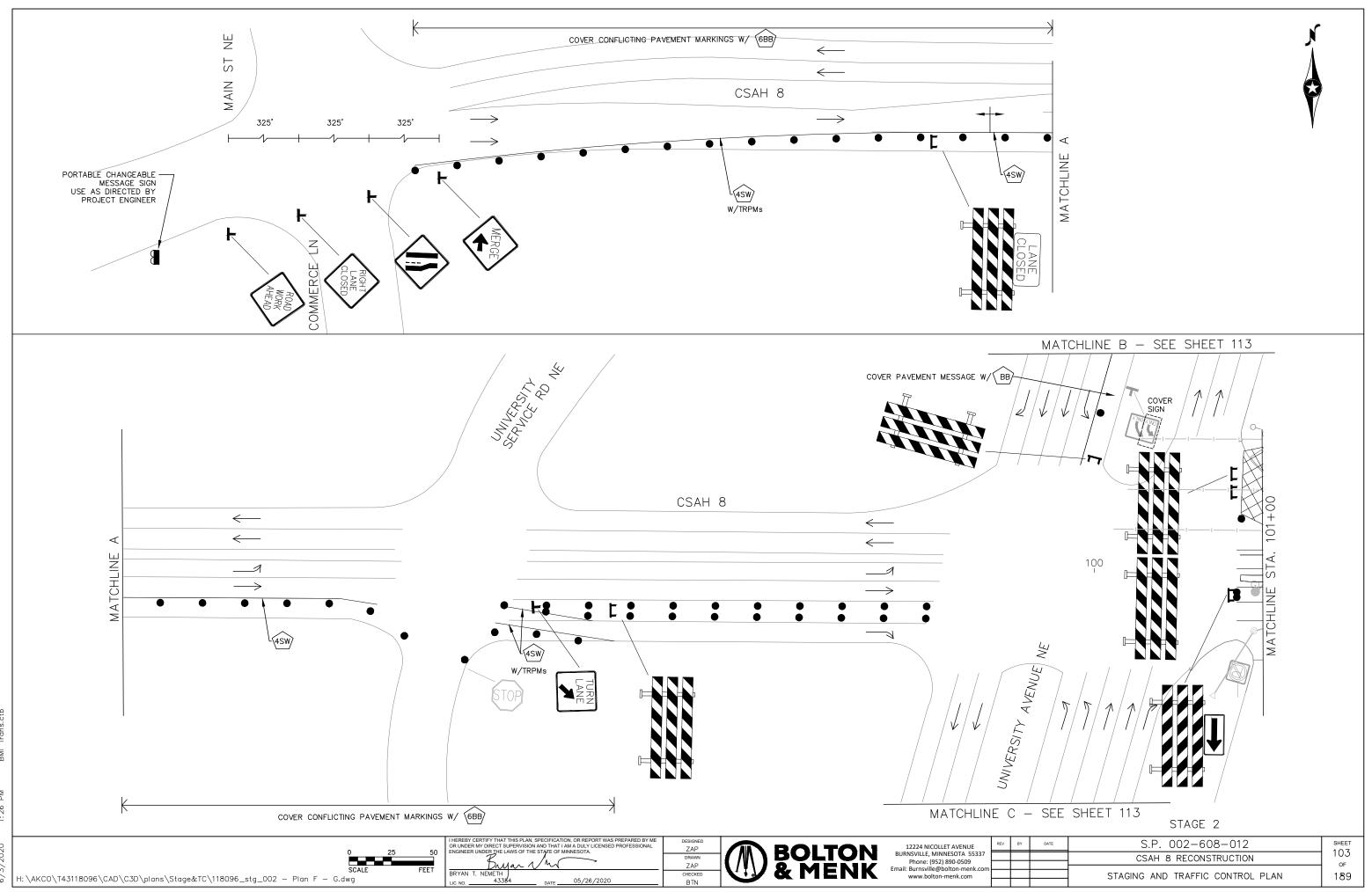

V	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	98
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189


STAGE 1

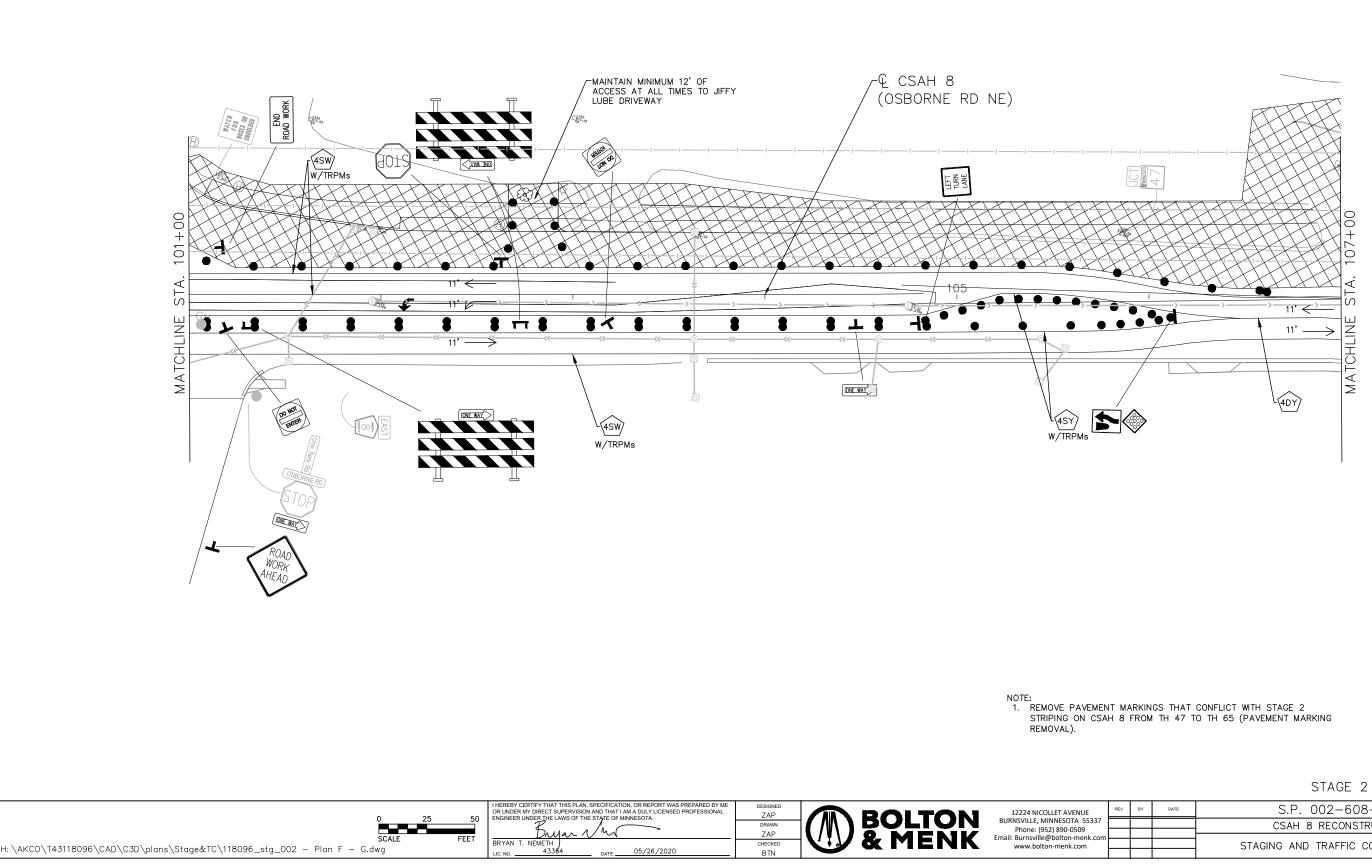

V	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	99
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100

entation).pc3 AutoCAD PDF (General Doc 1:26 PM BMI Trans.ctb taylorts 6/3/2020

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	100
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100

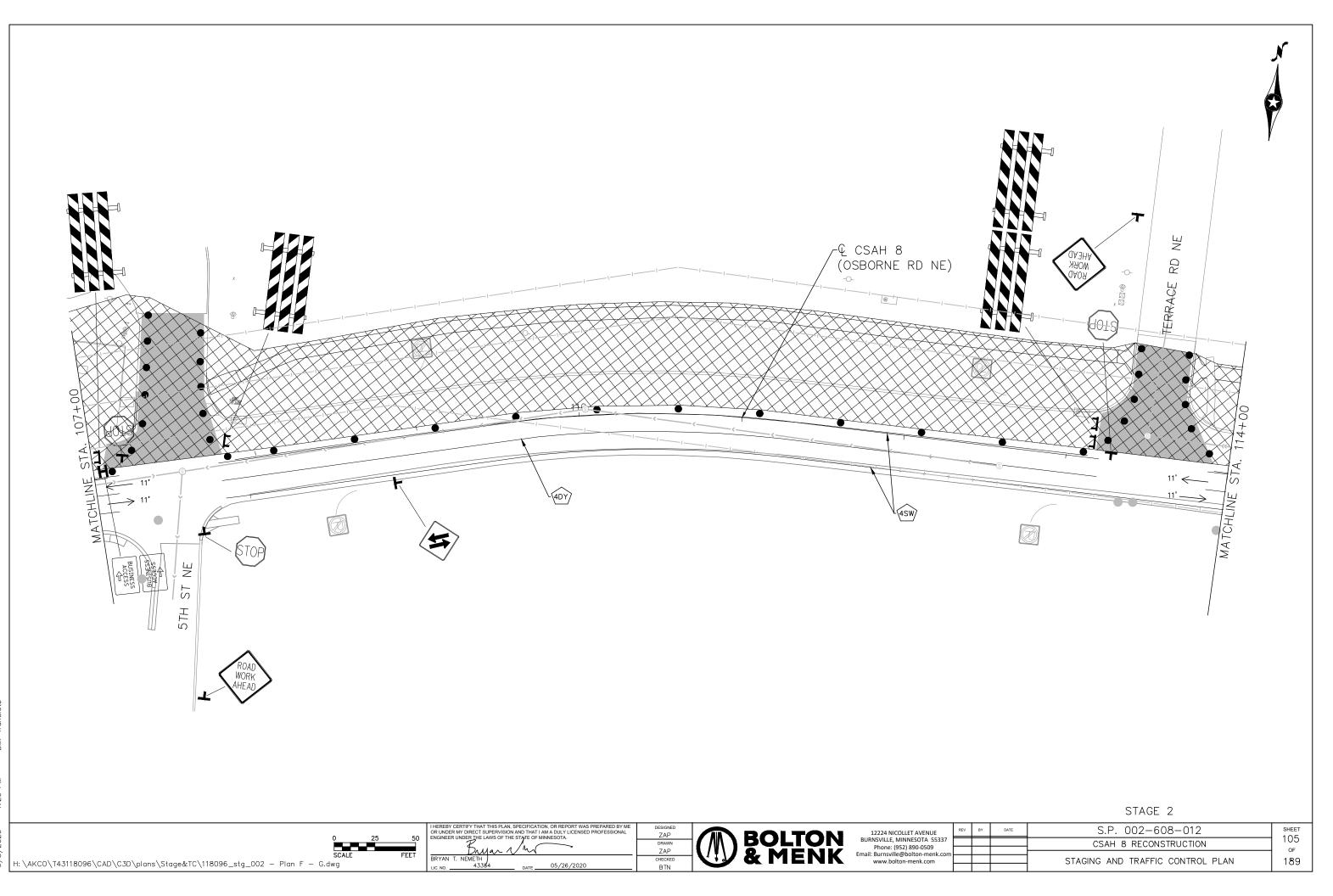


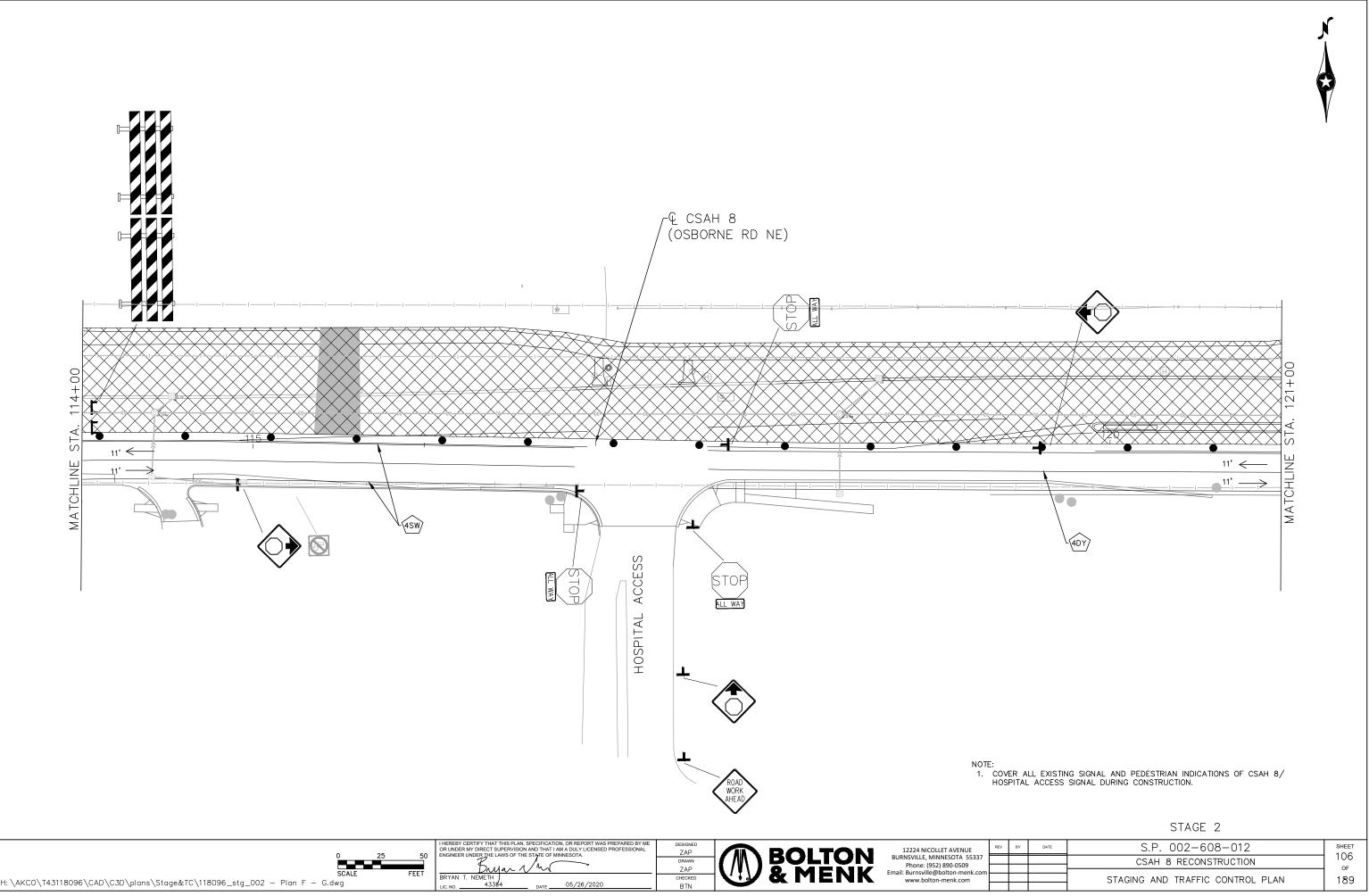
∼ COVER PAVEMENT MESSAGE W/ (BB)

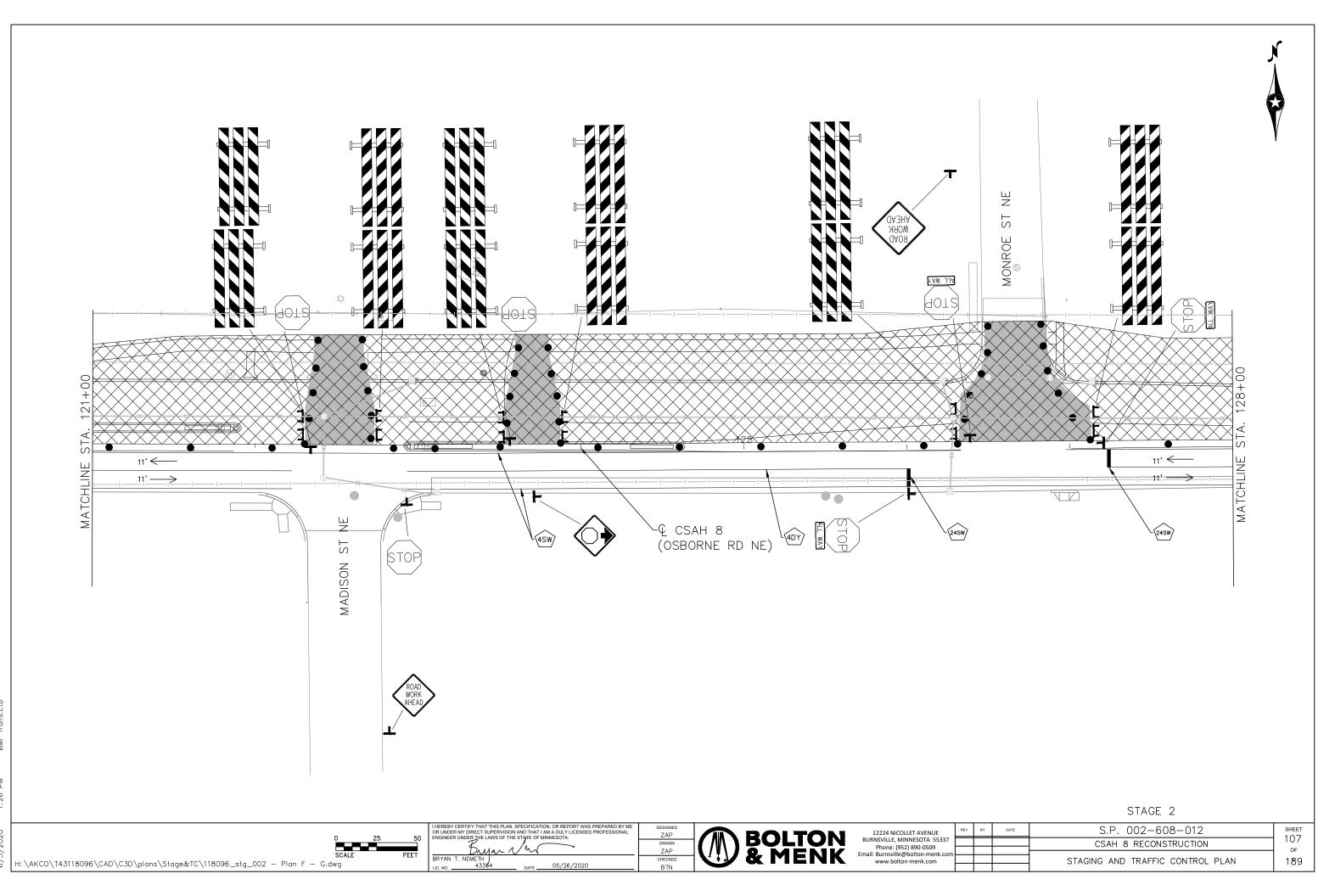

STAGE 1

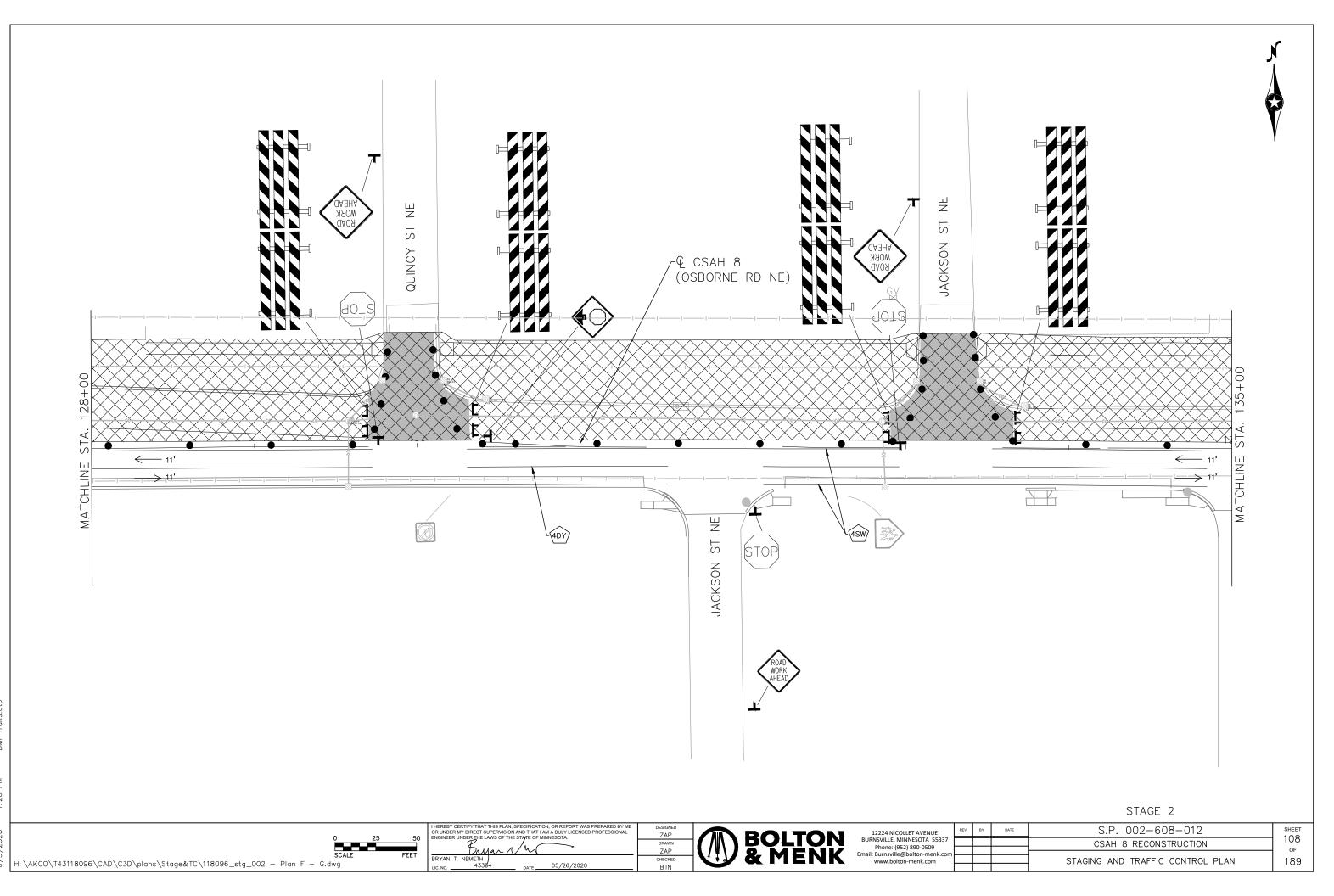
v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	102
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100

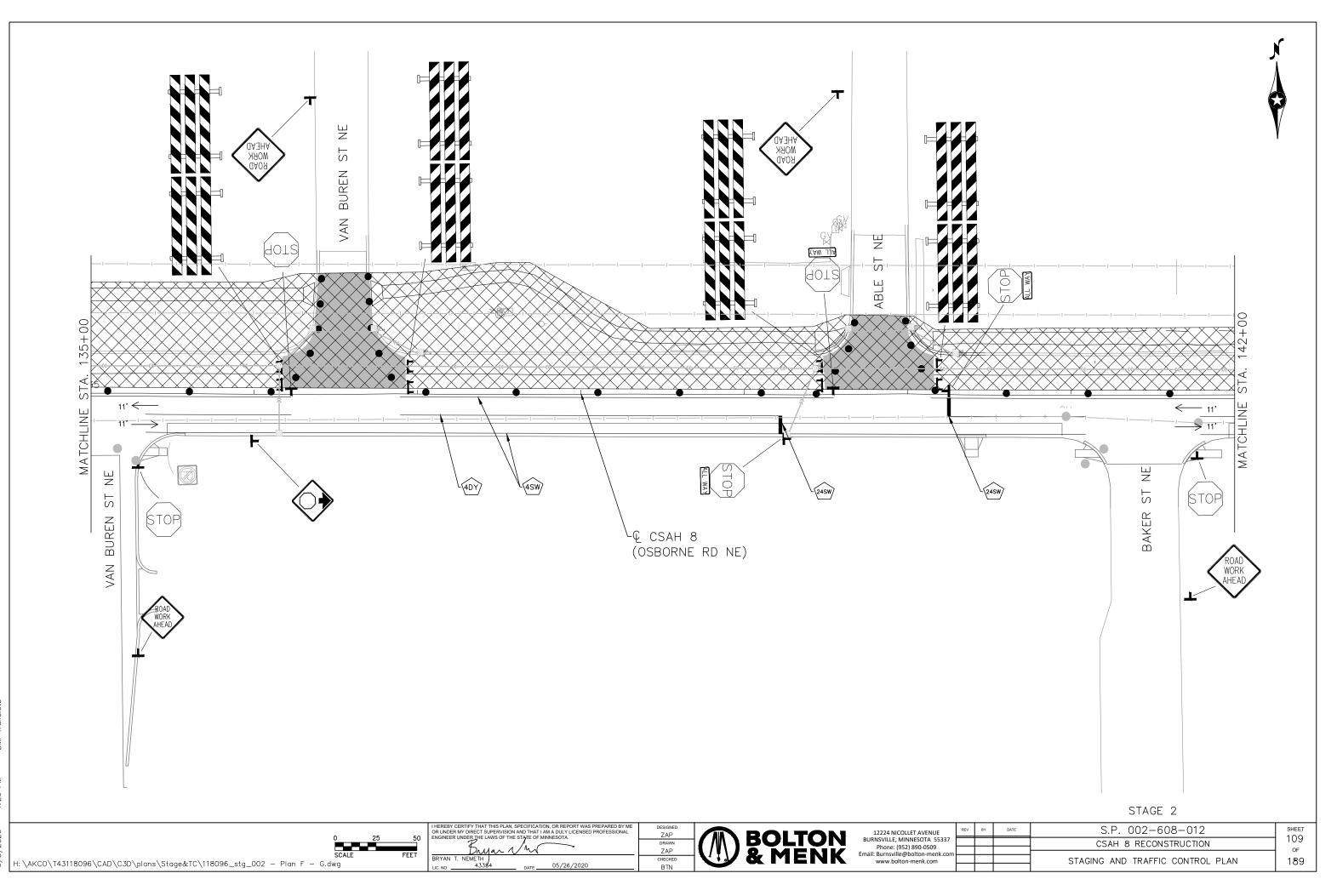
taylorts AutoCAD PDF (General Docur 6/3/2020 1:26 PM BMI Trans.ctb


entation).pc3

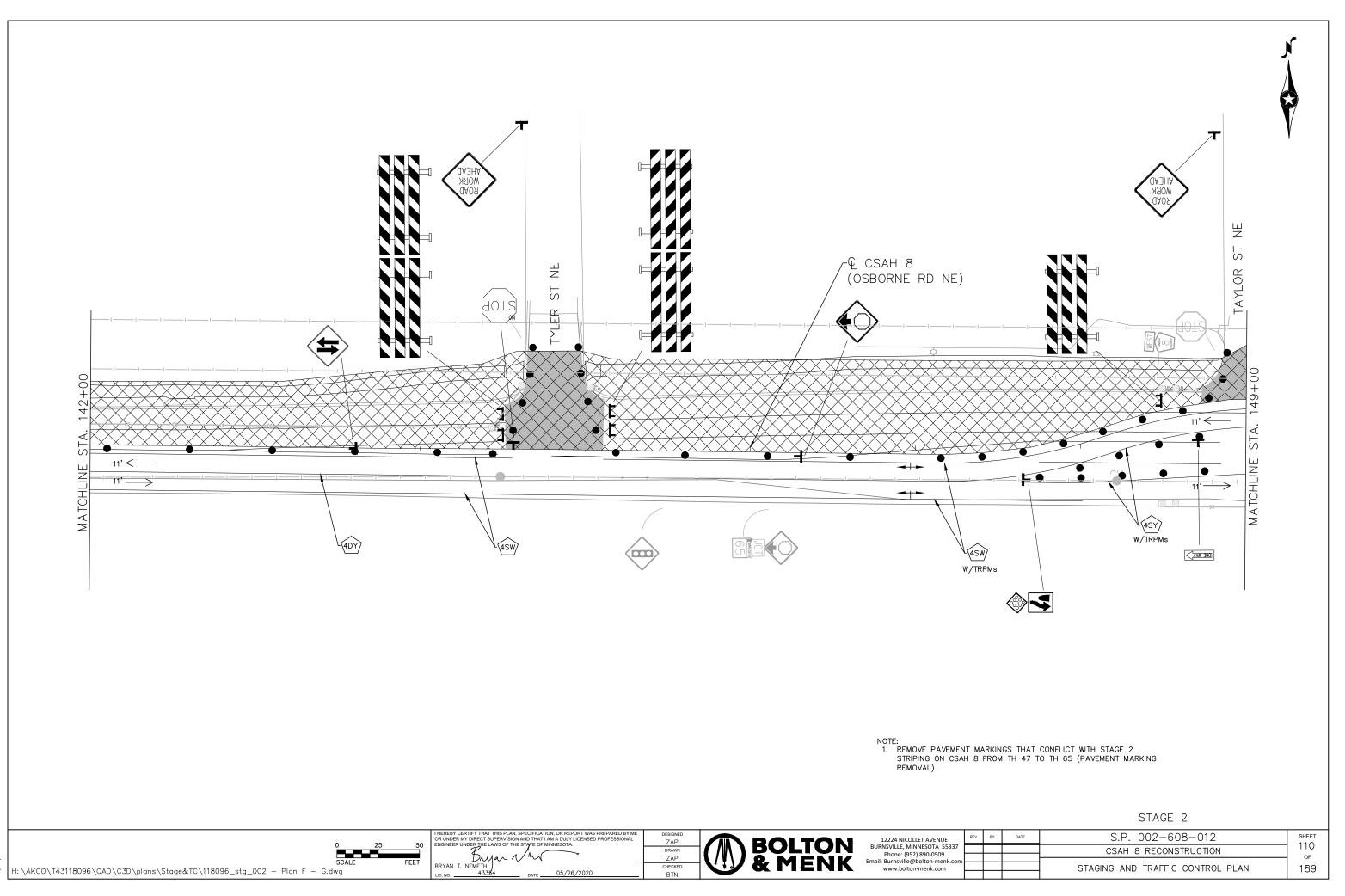

entation).pc3 AutoCAD PDF (General Doc 1:26 PM BMI Trans.ctb taylorts 6/3/2020

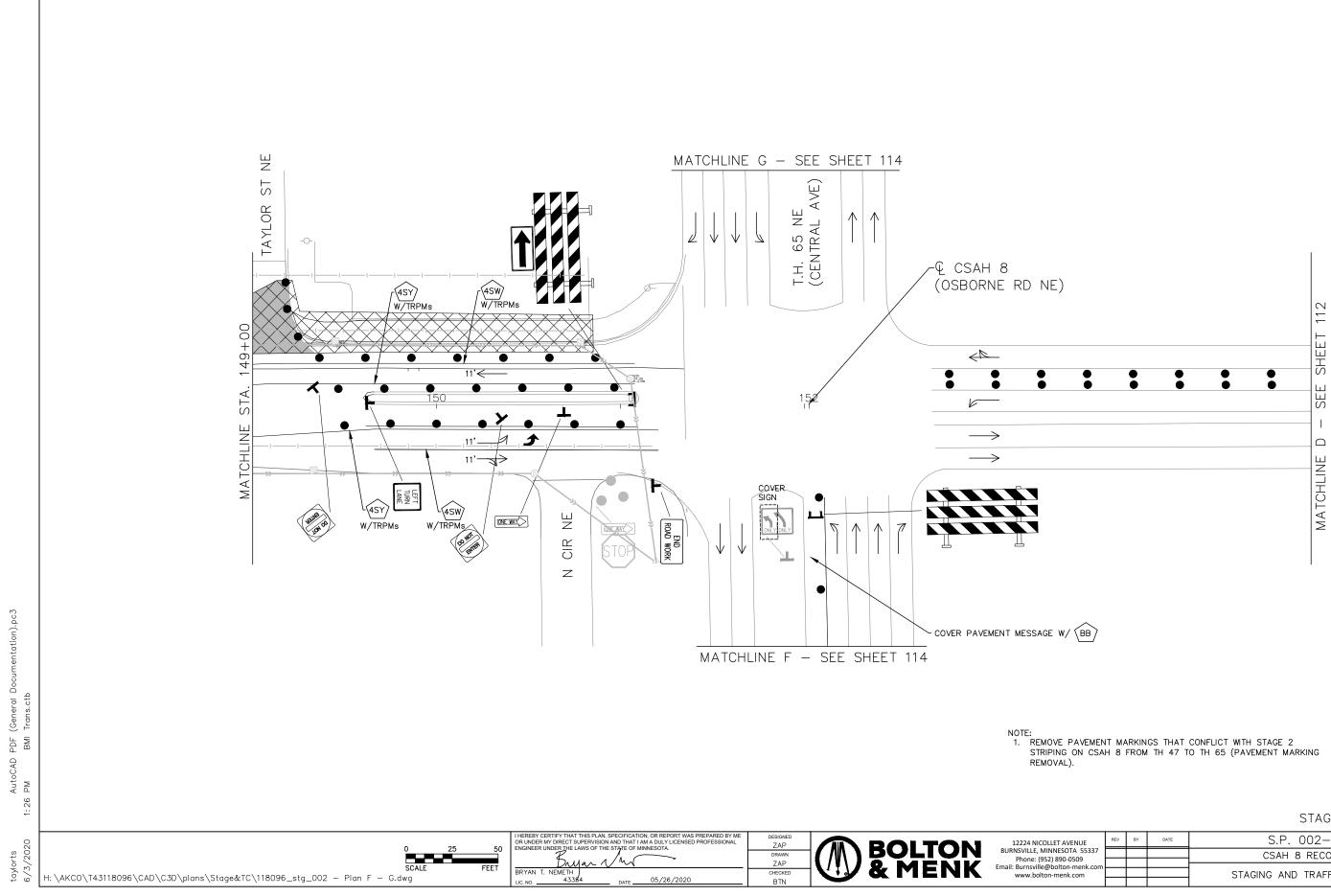

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	104
				OF
-				100
_			STAGING AND TRAFFIC CONTROL PLAN	189


taylorts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:26 PM BMI Trans.ctb

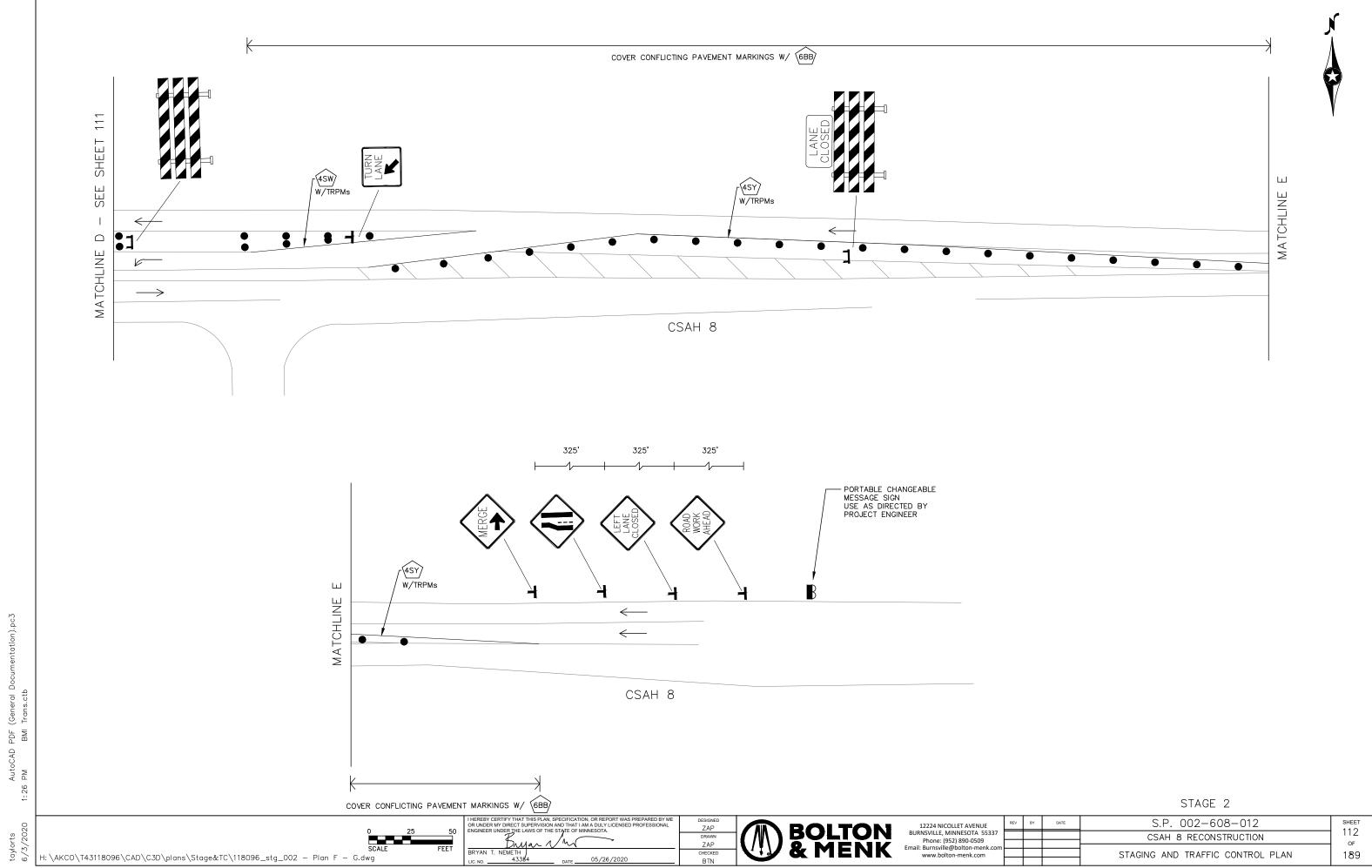


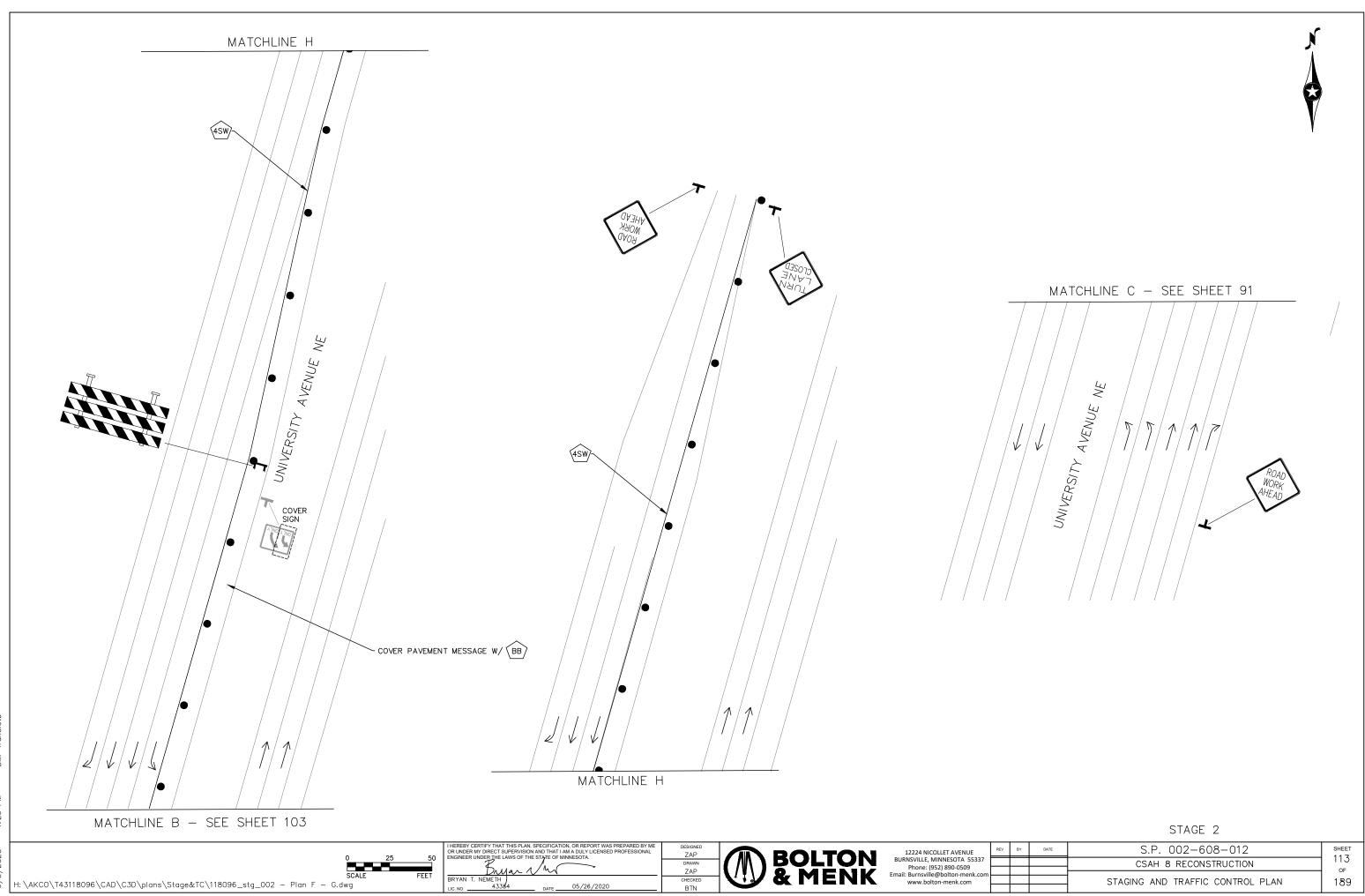
v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	106 of
_			STAGING AND TRAFFIC CONTROL PLAN	189
				100



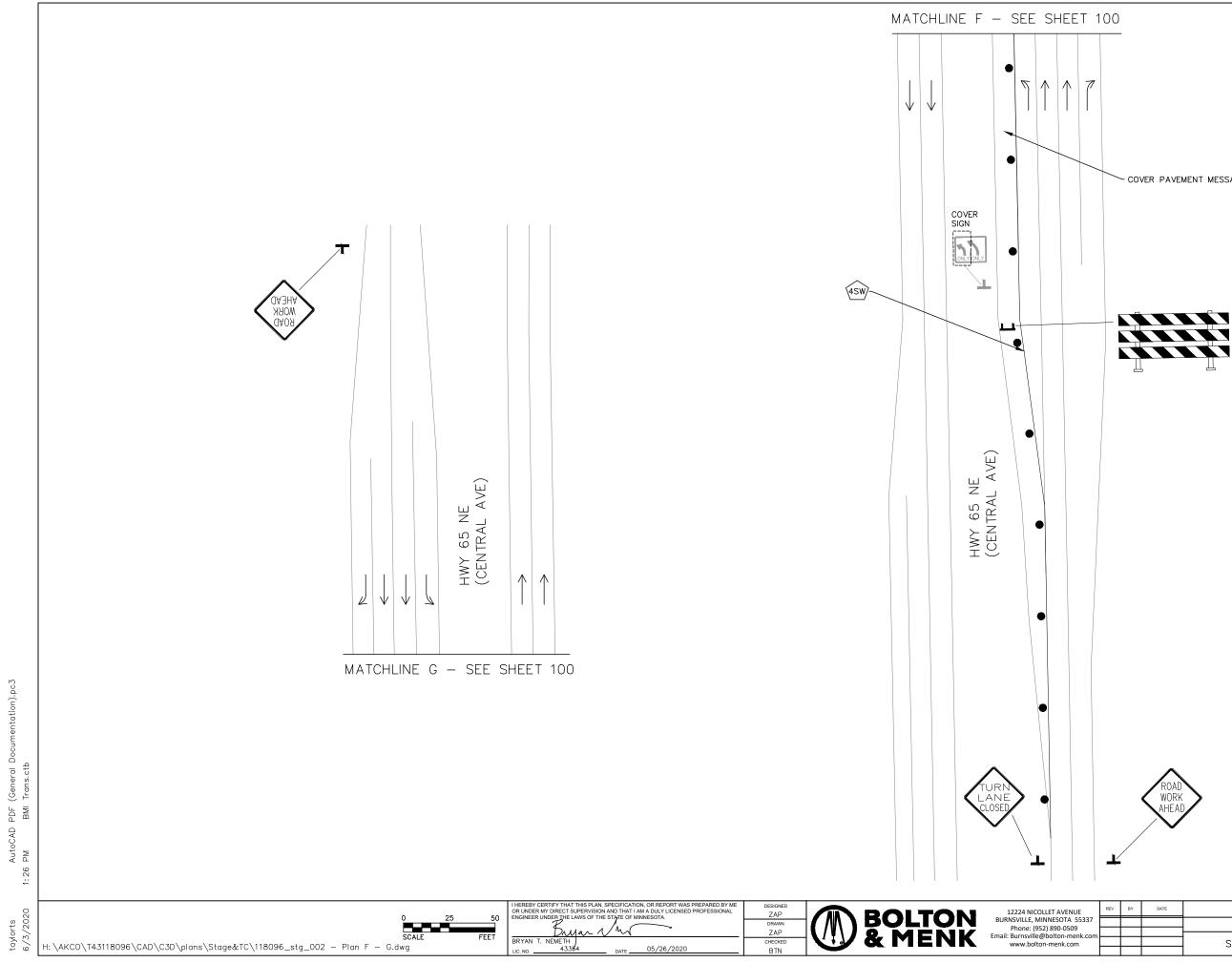

taylorts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:26 PM BMI Trans.ctb

tay/orts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:26 PM BMI Trans.ctb




STAGE 2

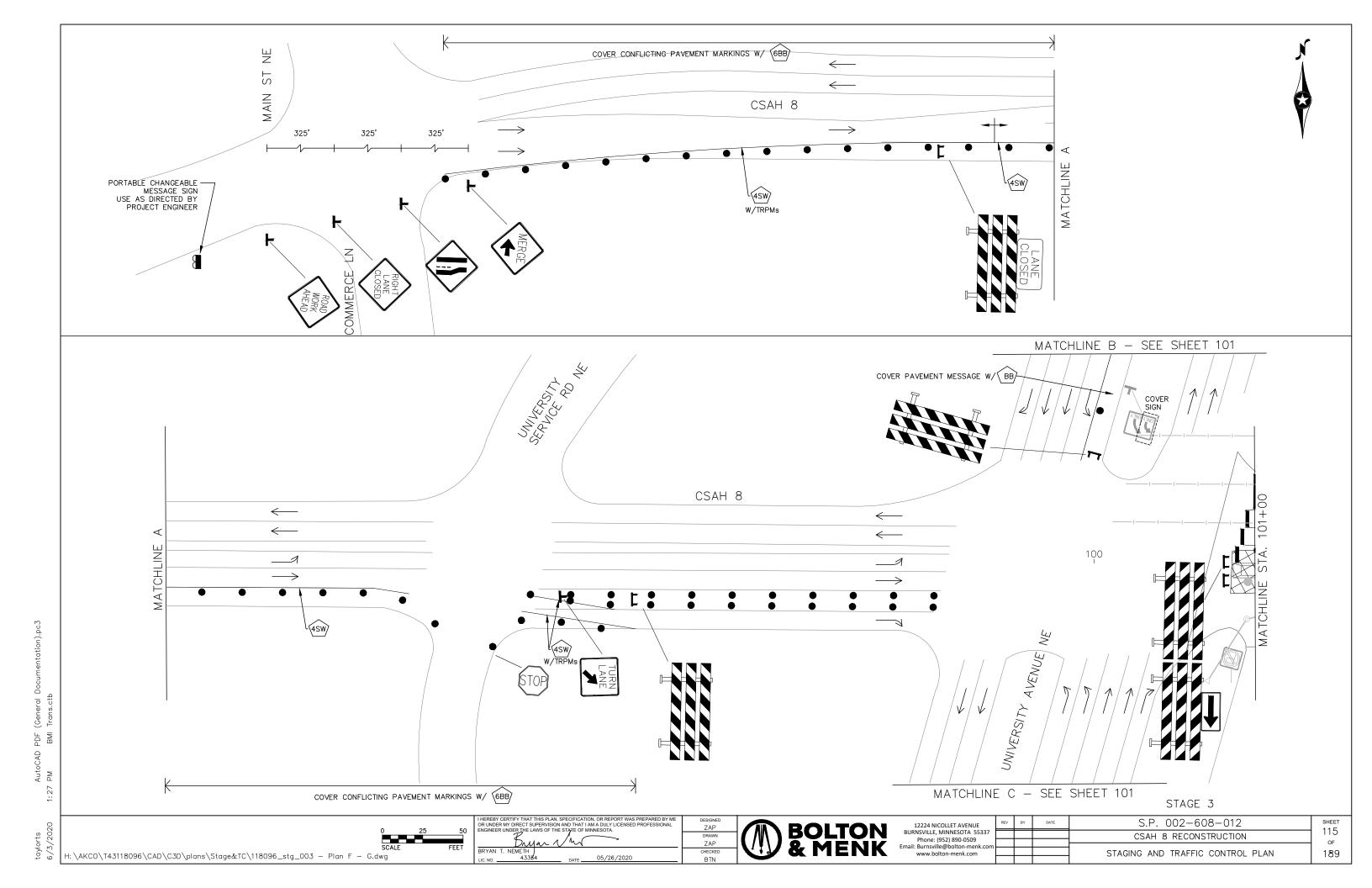
v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100

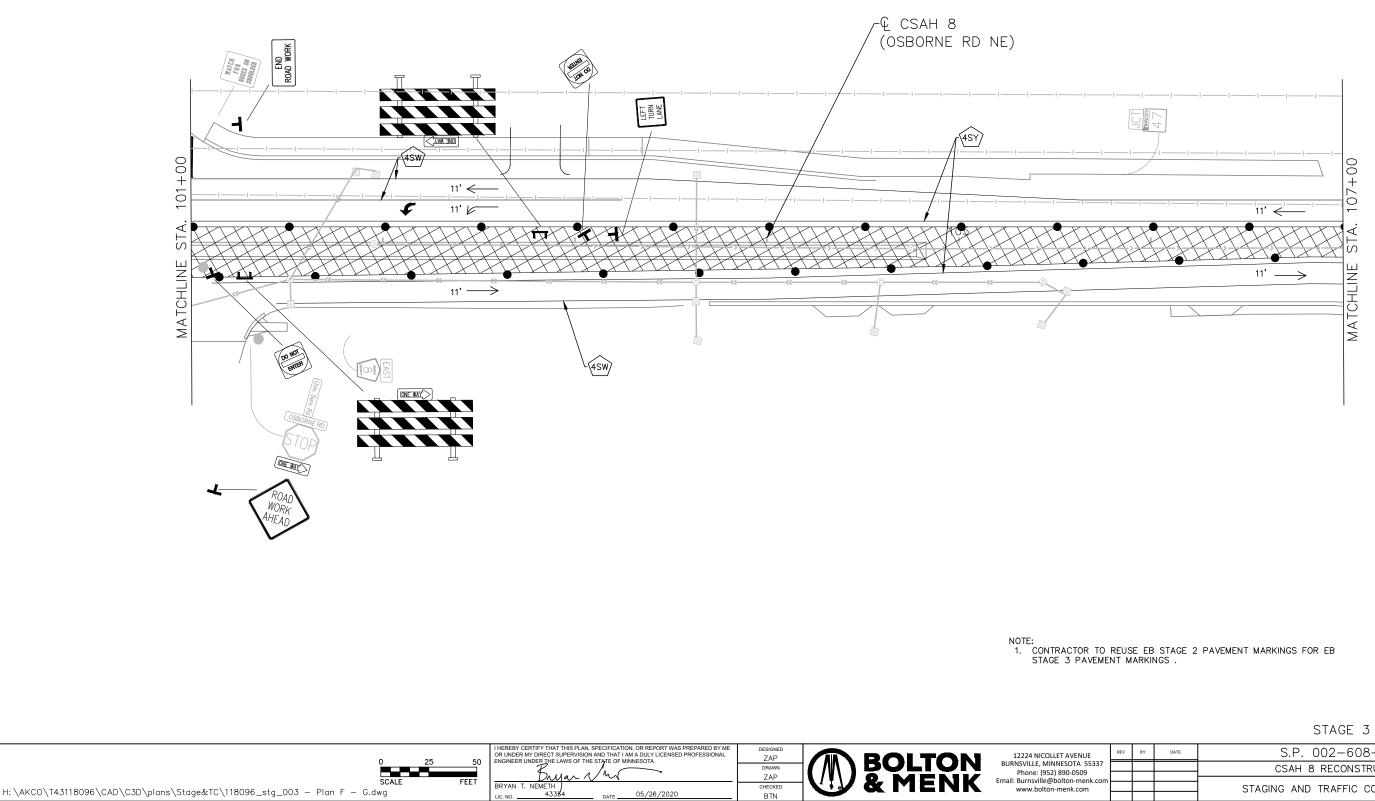

entation).pc3

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	112 OF
_			STAGING AND TRAFFIC CONTROL PLAN	
				105

taylorts AutoCAD PDF (General Docu 6/3/2020 1:26 PM BMI Trans.ctb

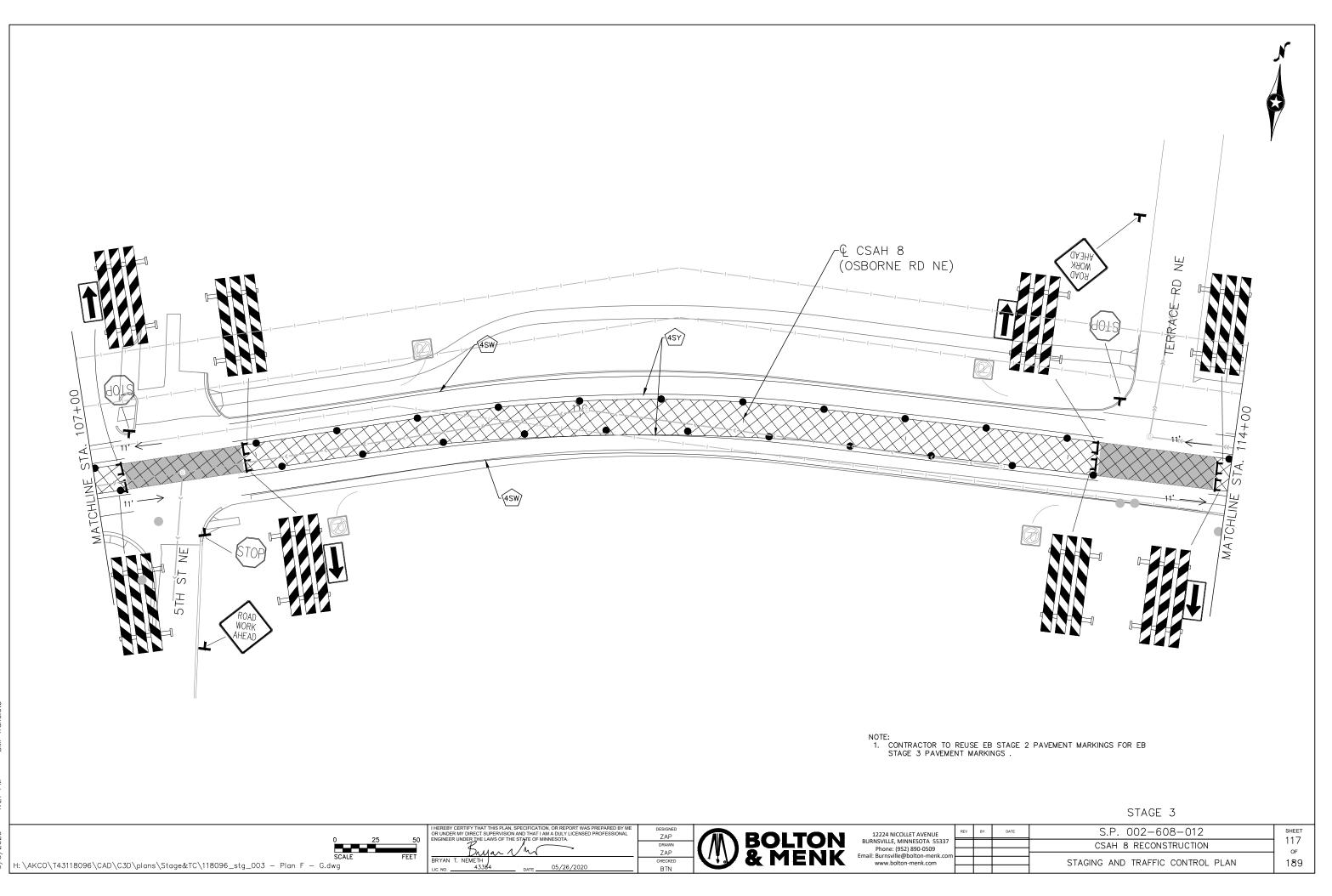
entation).pc3

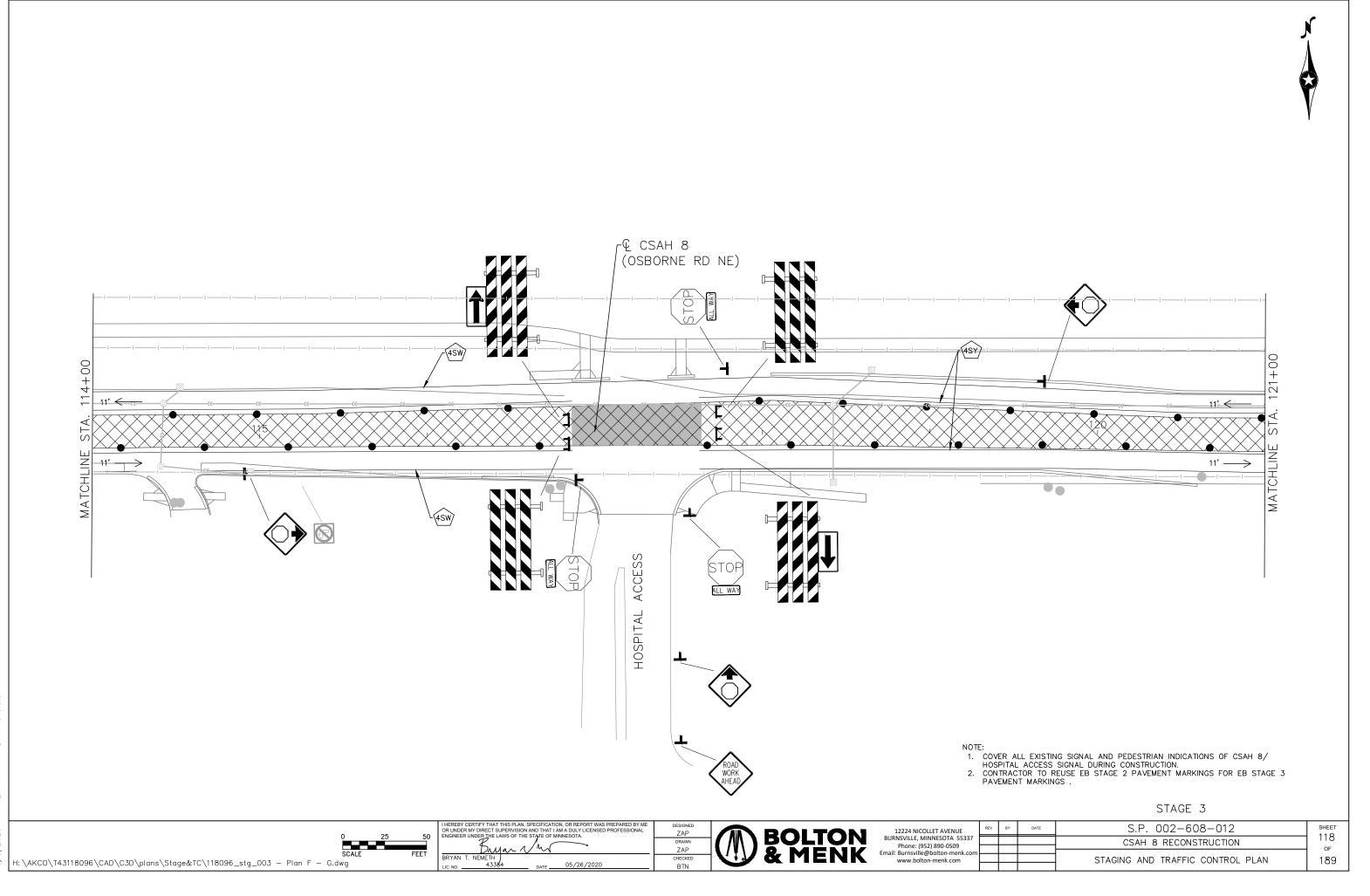


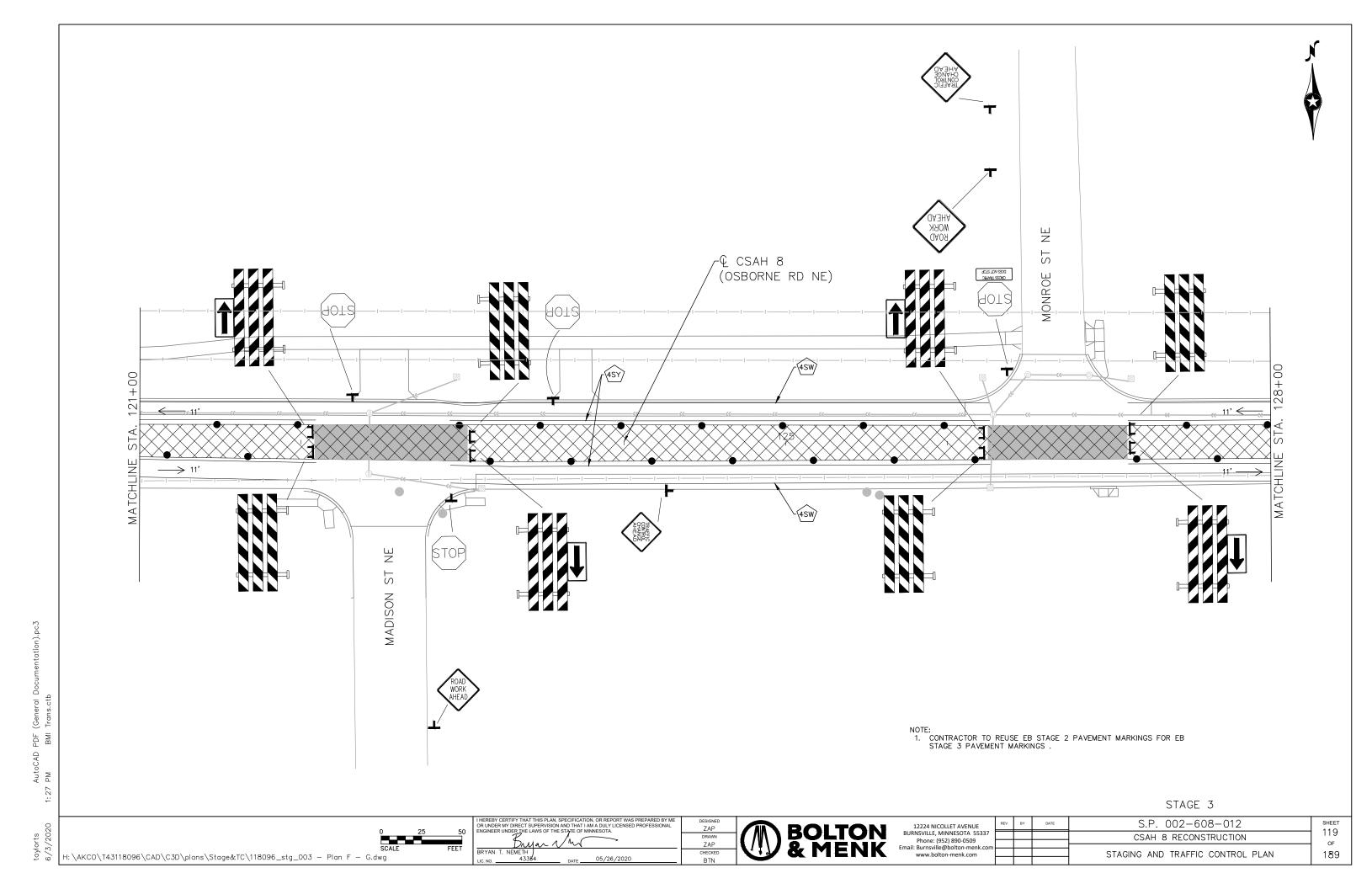


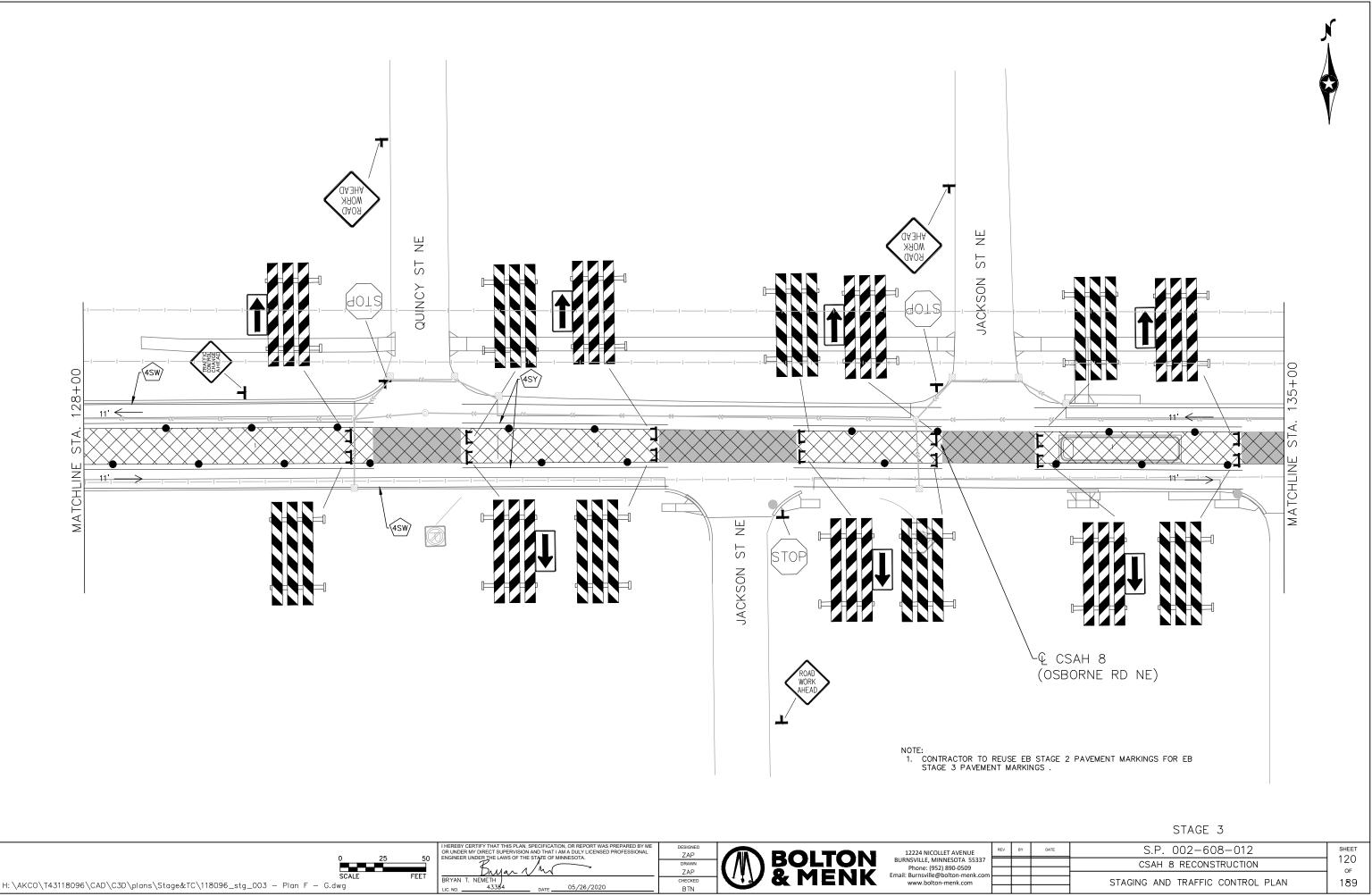
∼ COVER PAVEMENT MESSAGE W/ (BB)

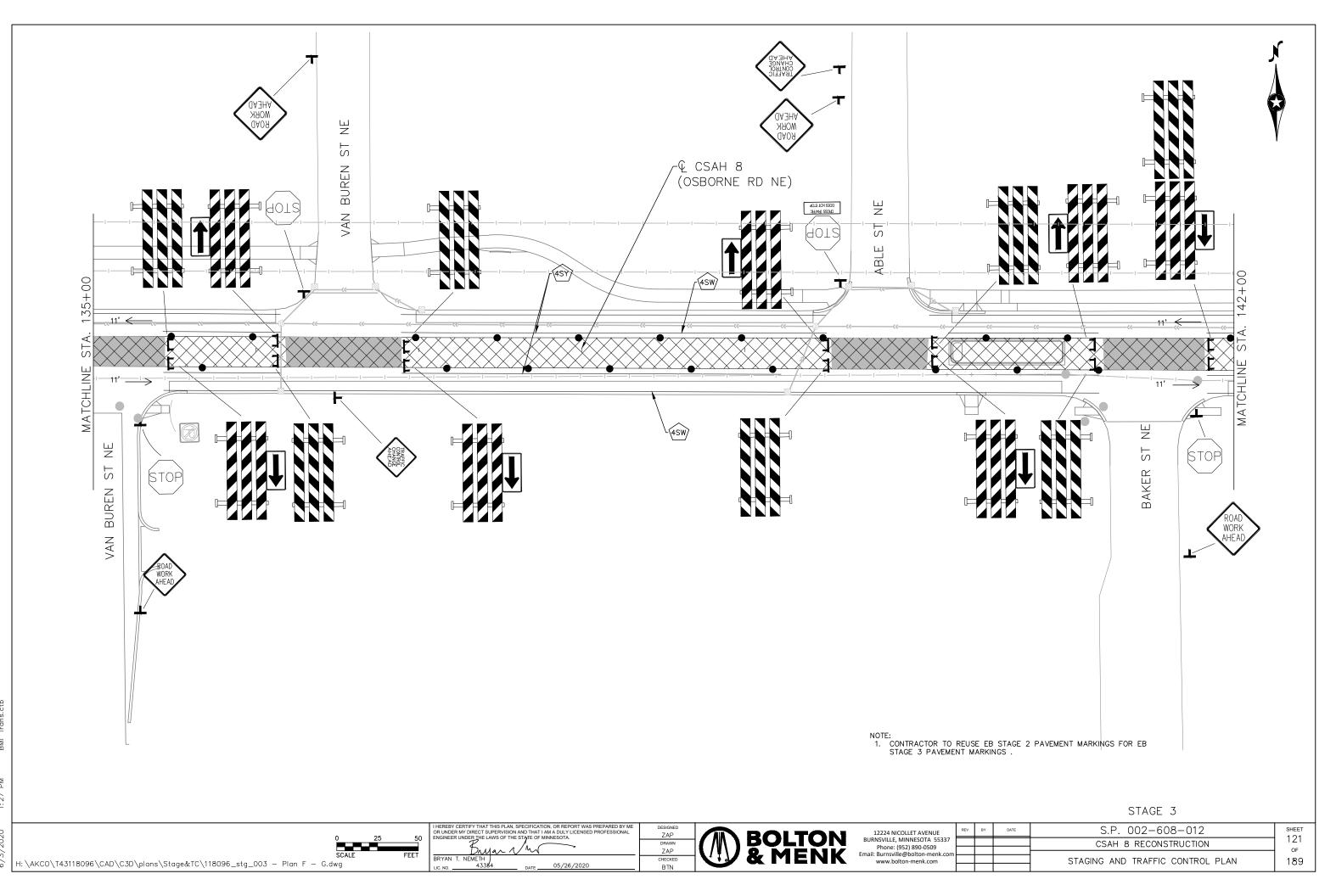
STAGE 2

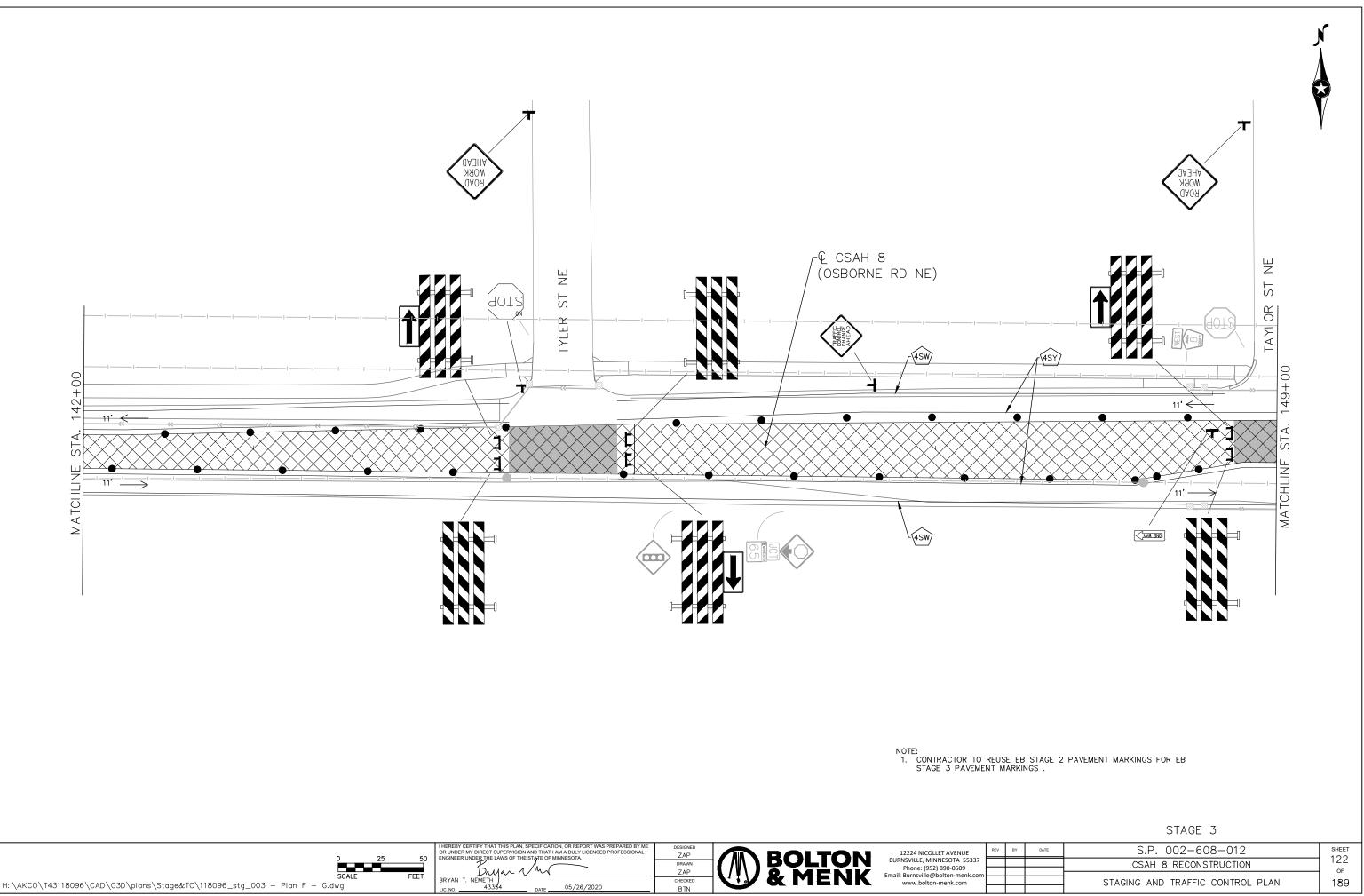

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	114
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100





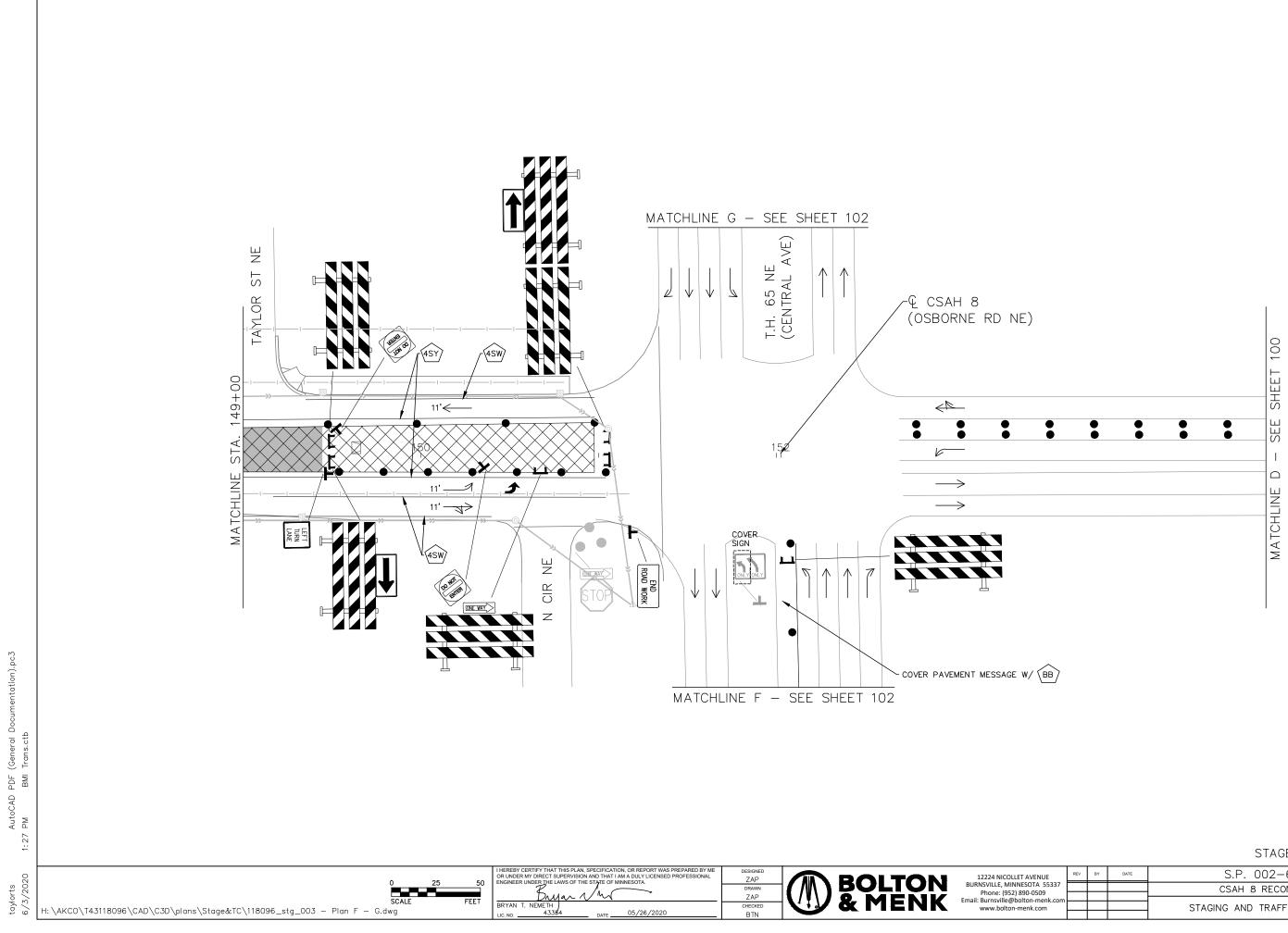

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	116
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100


taylorts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:27 PM BMI Trans.ctb



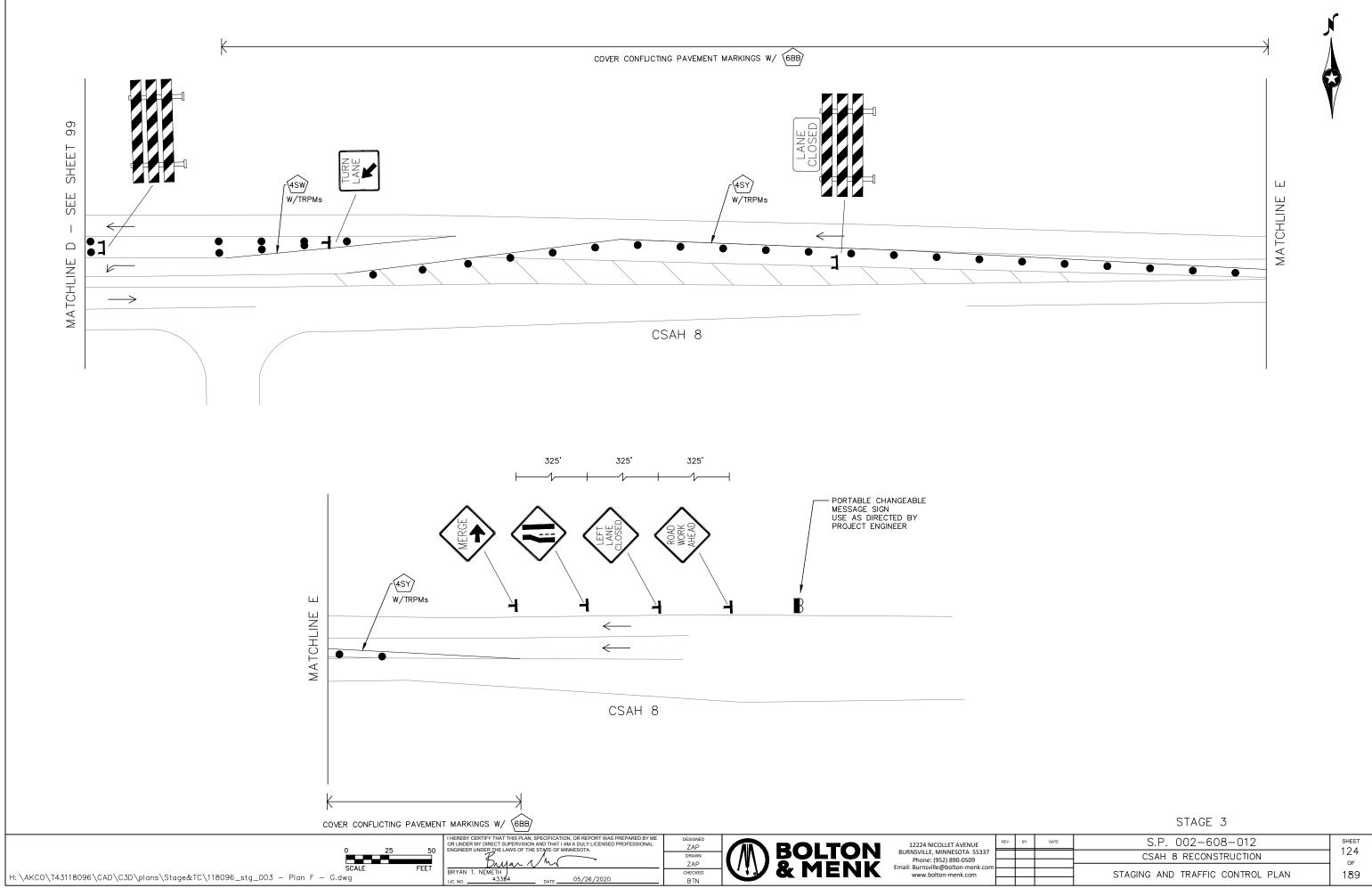
entation).pc3 AutoCAD PDF (General Doc 1:27 PM BMI Trans.ctb taylorts 6/3/2020

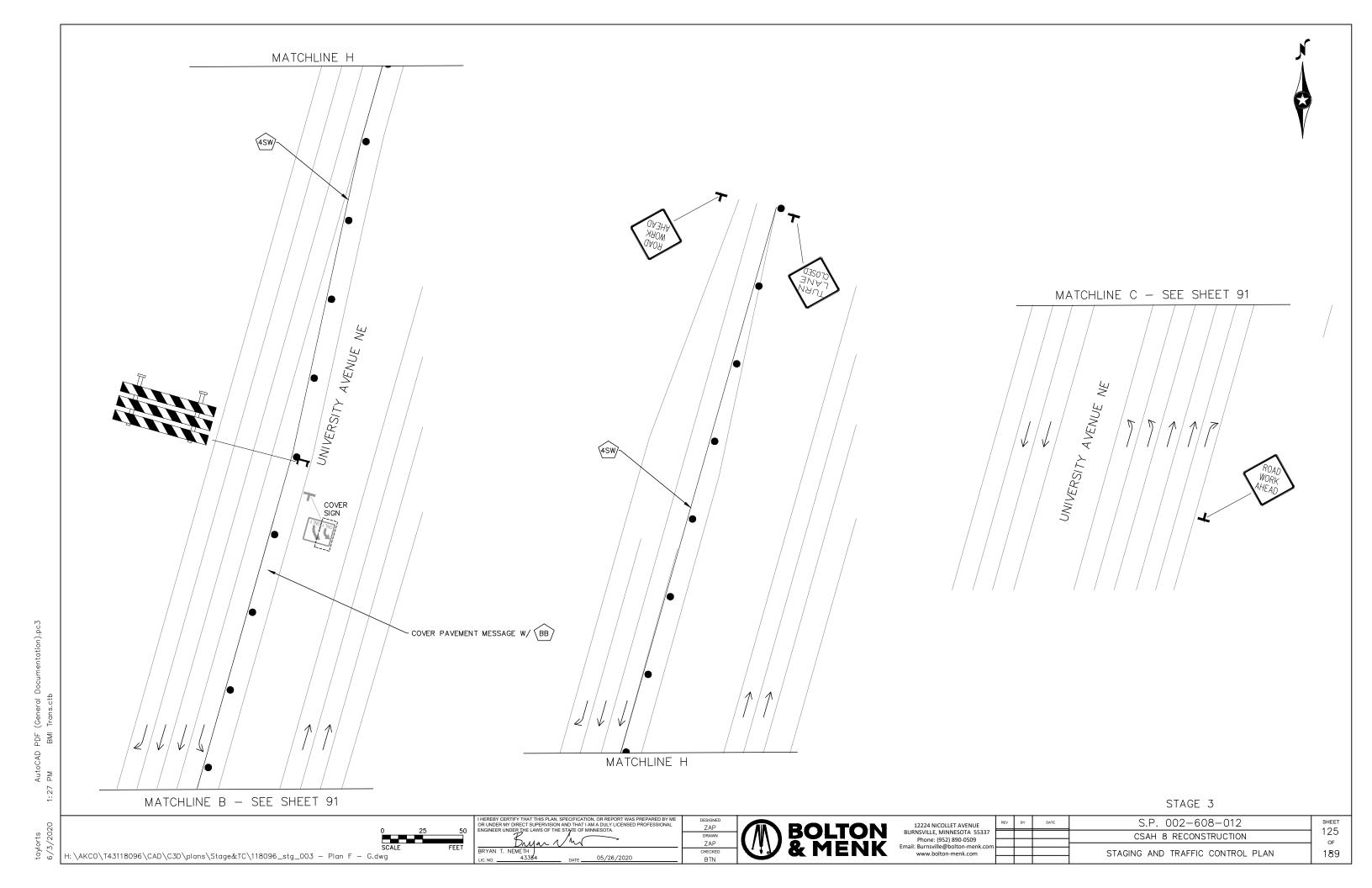
	3.1. 002 000 012	100
	CSAH 8 RECONSTRUCTION	120
		OF
	STAGING AND TRAFFIC CONTROL PLAN	189
		100

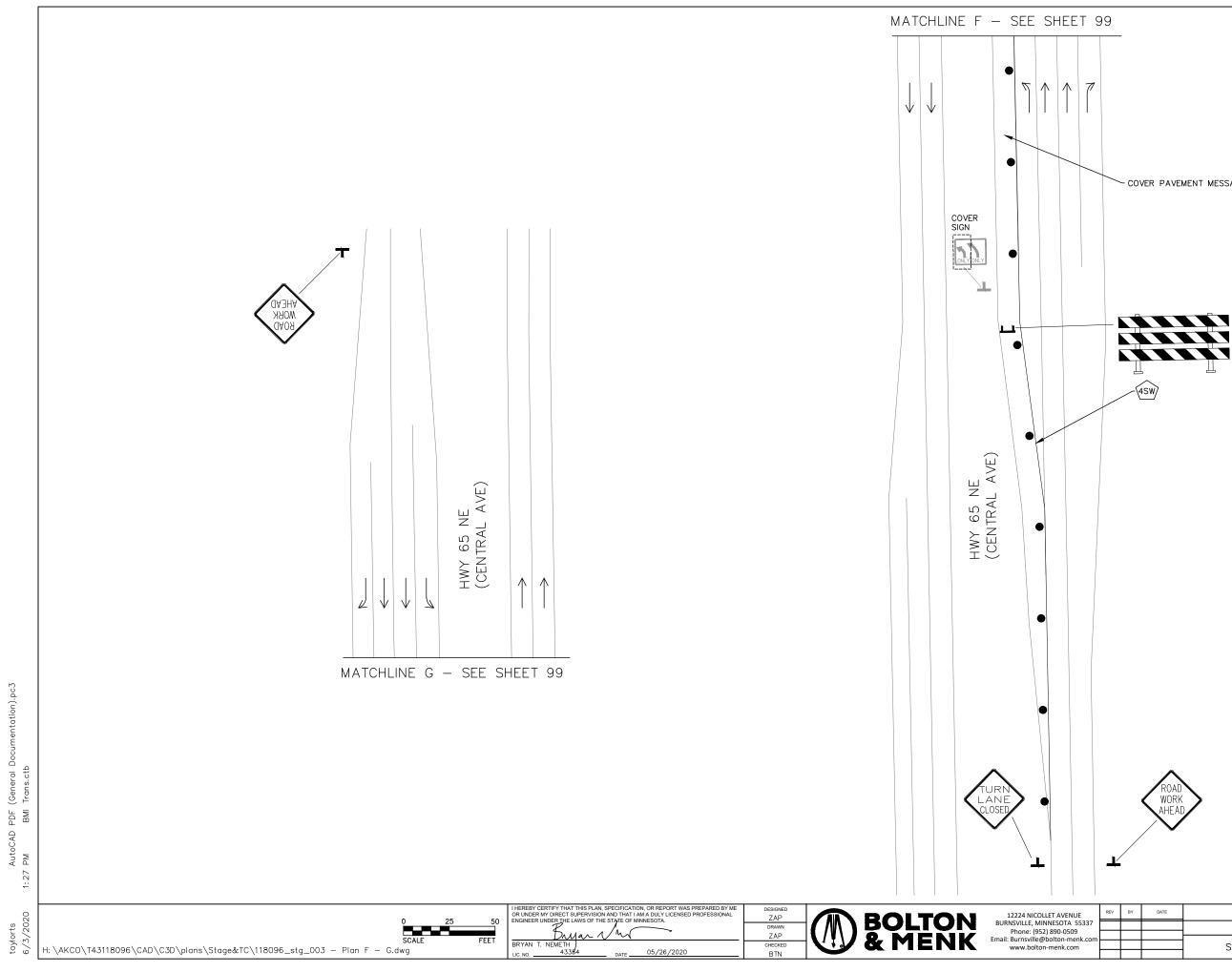

tay/orts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:27 PM BMI Trans.ctb

entation).pc3

AutoCAD PDF (General Doc 1:27 PM BMI Trans.ctb


taylorts 6/3/2020


STAGE 3


v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	123
				OF
				400
			STAGING AND TRAFFIC CONTROL PLAN	189

entation).pc3 AutoCAD PDF (General Doc 1:27 PM BMI Trans.ctb taylorts 6/3/2020

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	124
				OF
			STAGING AND TRAFFIC CONTROL PLAN	189
				100

∼ COVER PAVEMENT MESSAGE W/ (BB)

STAGE 3

v	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	126 OF
_			STAGING AND TRAFFIC CONTROL PLAN	^{0⊦} 189
				105

PERMANENT PAVEMENT MARKING PLAN NOTES AND GUIDELINES

GENERAL INFORMATION:

THE ENGINEER'S INVOLVEMENT IN THE APPLICATION OF THE MATERIAL SHALL BE LIMITED TO FIELD CONSULTATION AND INSPECTION. ANOKA COUNTY HIGHWAY DEPARTMENT WILL PLACE NECESSARY "SPOTTING" AT APPROPRIATE POINTS TO PROVIDE HORIZONTAL CONTROL FOR STRIPING AND TO DETERMINE NECESSARY STARTING AND CUTOFF POINTS, LONGITUDINAL JOINTS, PAVEMENT EDGES AND EXISTING MARKINGS MAY SERVE AS HORIZONTAL CONTROL WHEN SO DIRECTED.

EDGE LINES AND LANE LINES ARE TO BE BROKEN ONLY AT INTERSECTIONS WITH PUBLIC ROADS AND AT PRIVATE ENTRANCES IF THEY ARE CONTROLLED BY A YIELD SIGN, STOP SIGN OR TRAFFIC SIGNAL. THE BREAK POINT IS TO BE AT THE START OF THE RADIUS FOR THE INTERSECTION OR AT MARKED STOP LINES OR CROSSWALKS.

A TOLERANCE OF $\frac{1}{4}$ INCH UNDER OR $\frac{1}{4}$ INCH OVER THE SPECIFIED WIDTH WILL BE ALLOWED FOR STRIPING PROVIDED THE VARIATION IS GRADUAL AND DOES NOT DETRACT FROM THE GENERAL APPEARANCE. BROKEN LINE SEGMENTS MAY VARY UP TO ONE-HALF FOOT FROM THE SPECIFIED LENGTHS PROVIDED THE OVER AND UNDER VARIATIONS ARE REASONABLY COMPENSATORY. ALIGNMENT DEVIATIONS FROM THE CONTROL GUIDE SHALL NOT EXCEED 1 INCH. MATERIAL SHALL NOT BE APPLIED OVER LONGITUDINAL JOINTS, ESTABLISHMENT OF APPLICATION TOLERANCES SHALL NOT RELIEVE THE CONTRACTOR OF THEIR RESPONSIBILITY TO COMPLY AS CLOSELY AS PRACTICABLE WITH THE PLANNED DIMENSIONS.

MULTI COMPONENT (MULTI COMP):

THE ROAD SURFACE SHALL BE CLEANED AT THE DIRECTION OF THE ENGINEER JUST PRIOR TO APPLICATION. PAVEMENT CLEANING SHALL CONSIST OF AT LEAST BRUSHING WITH A ROTARY BROOM (NON-METALLIC) OR AS RECOMMENDED BY THE MATERIAL MANUFACTURER AND ACCEPTABLE TO THE ENGINEER. NEW PORTLAND CEMENT CONCRETE SURFACES SHALL BE SANDBLAST CLEANED TO REMOVE ANY SURFACE TREATMENT AND/OR LAITANCE ON LOW SPEED (SPEED LIMIT 35 MPH OR LESS) URBAN PORTLAND CEMENT CONCRETE ROADWAYS. SANDBLAST CLEANING SHALL BE USED FOR ALL EPOXY PAVEMENT MARKINGS.

THE MULTI COMP MARKING APPLICATION SHALL IMMEDIATELY FOLLOW THE PAVEMENT CLEANING. GLASS BEANS SHALL BE APPLIED IMMEDIATELY AFTER APPLICATION OF THE EPOXY RESIN LINE TO PROVIDE AN IMMEDIATE NO-TRACK SYSTEM.

A MULTI COMP RESIN LINE 4" WIDE AND 15 MILL THICKNESS (WET), REQUIRES AN APPLICATION RATE OF ONE (1) GALLON OF COMPONENTS FOR 320 FEET OF LINE. GLASS BEADS SHALL BE APPLIED AT A POUND PER GALLON RATE SUFFICIENT TO ACHIEVE AN ACCEPTABLE NO-TRACK SYSTEM.

OPERATIONS SHALL BE CONDUCTED ONLY WHEN THE ROAD PAVEMENT SURFACE TEMPERATURES ARE 50 DEGREES FAHRENHEIT OR GREATER.

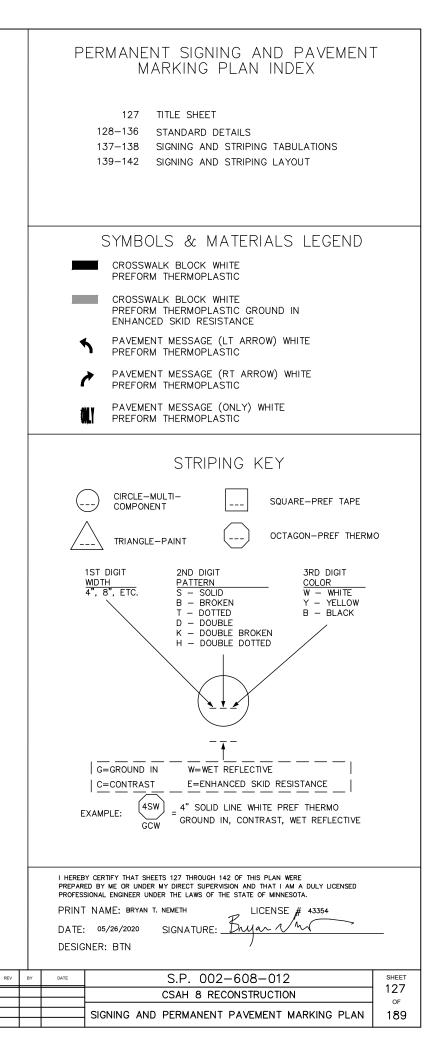
PERMANENT PAVEMENT MARKINGS SHALL NOT BE PLACED OVER TEMPORARY TAPE MARKINGS.

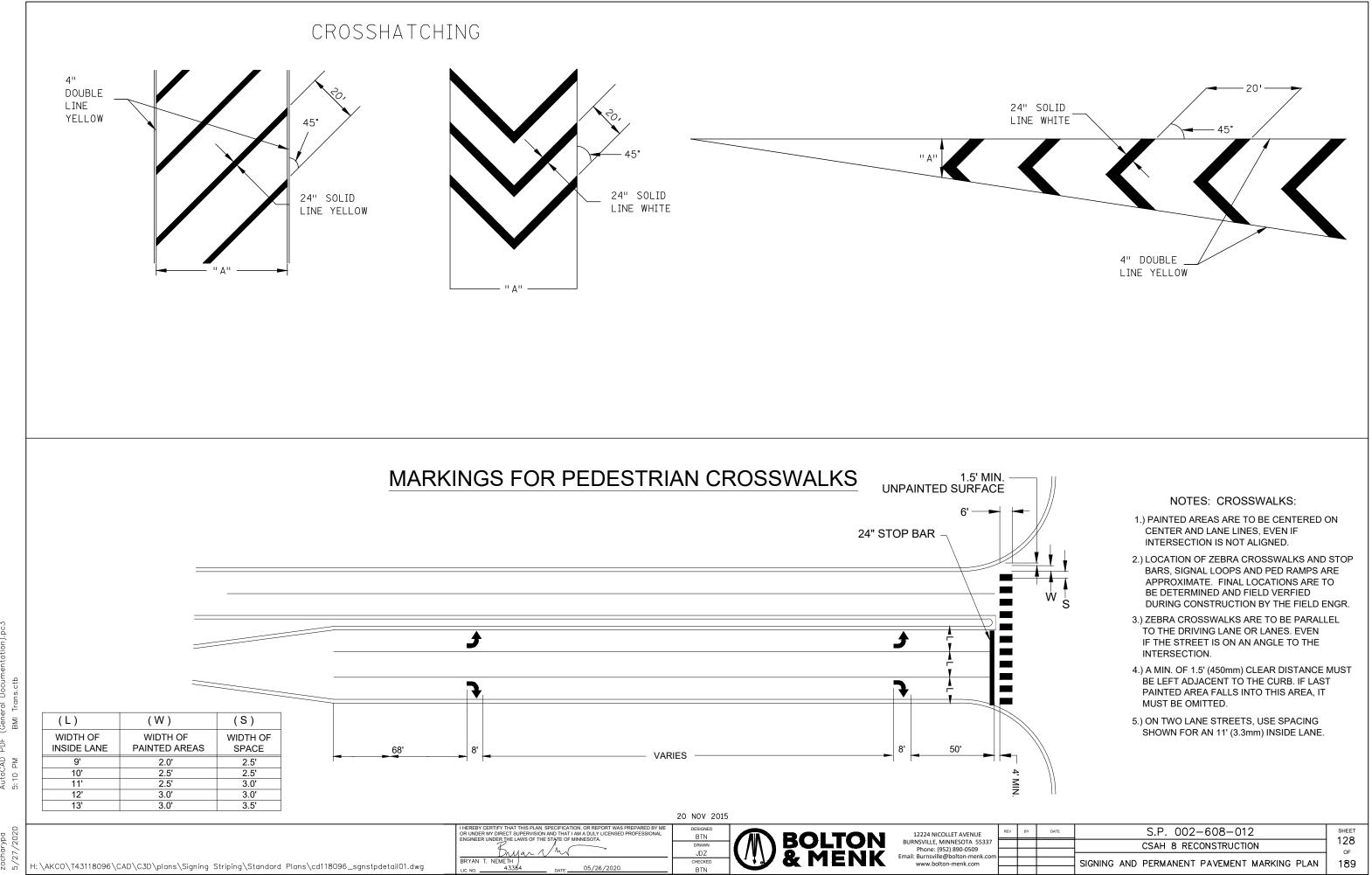
PREFORMED THERMOPLASTIC:

THE PREFORMED THERMOPLASTIC MARKINGS SHALL BE APPLIED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS ON CLEAN AND DRY SURFACES. SEE SPECIAL PROVISIONS FOR PREFORMED THERMOPLASTIC MARKING SPECIFICATIONS.

PAINT:

AT THE TIME OF APPLYING THE MARKING MATERIAL, THE APPLICATION AREA SHALL BE FREE OF CONTAMINATION. THE CONTRACTOR SHALL CLEAN THE ROADWAY SURFACE PRIOR TO THE LINE APPLICAITON IN A MANNER AND TO THE EXTENT REQUIRED BY THE ENGINEER.

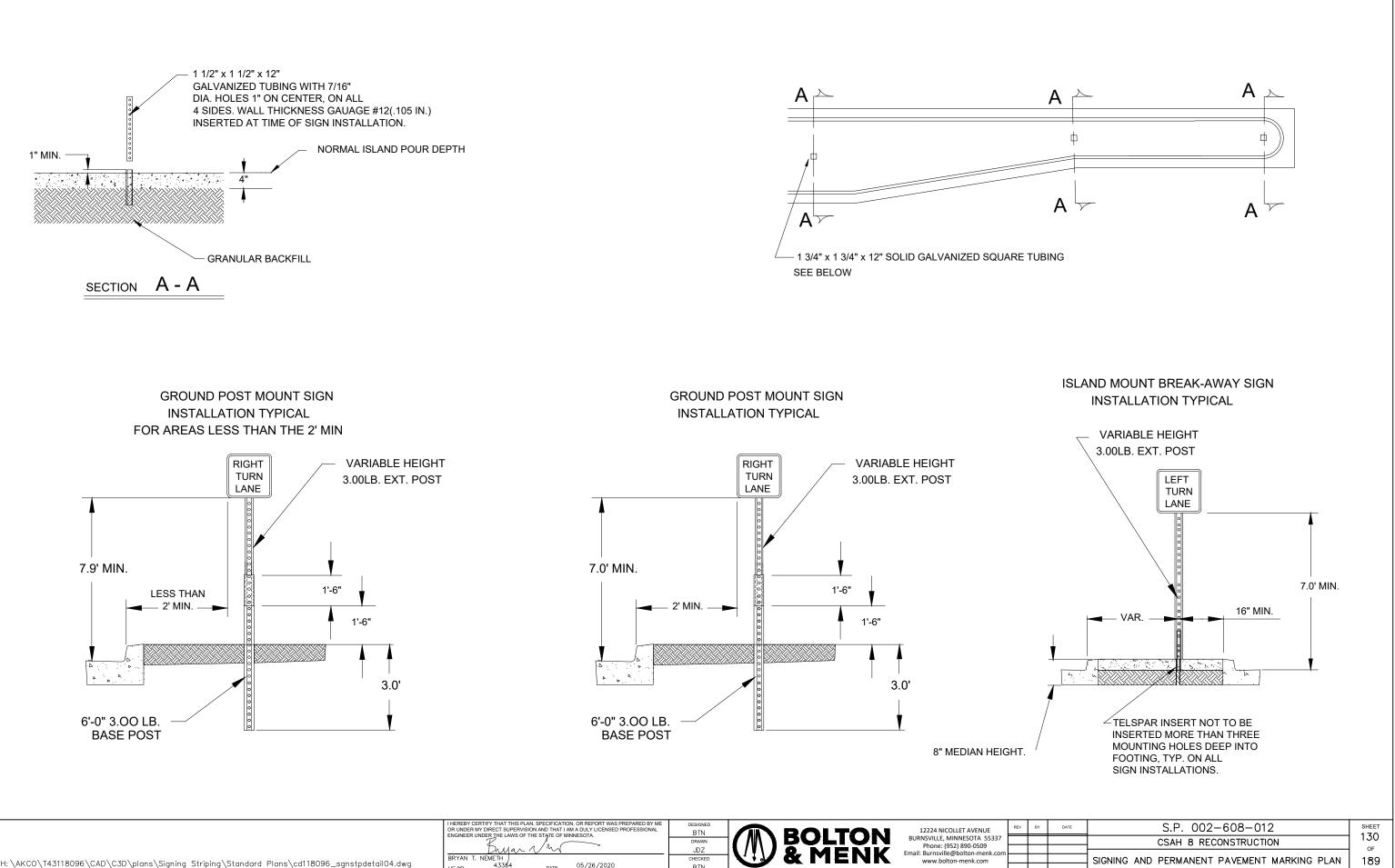

GLASS BEADS SHALL BE APPLIED IMMEDIATELY AFTER APPLICATION OF THE PAINT LINE.


EXCEPT WHEN USED AS A TEMPORARY MARKING, PAVEMENT MARKINGS SHALL ONLY BE APPLIED IN SEASONABLE WEATHER WHEN AIR TEMPERATURE IS 50 DEGREES FARHENHEIT OR HIGHER AND SHALL NOT BE APPLIED WHEN THE WIND OR OTHER CONDITIONS CAUSE A FILD OR DUST TO BE DEPOSITED ON THE PAVEMENT SURFACE AFTER CLEANING AND BEFORE THE MARKING MATERIAL CAN BE APPLIED.

THE FILLING OF TANKS, POURING OF MATERIALS OR CLEANING OF EQUIPMENT SHALL NOT BE PERFORMED ON UNPROTECTED PAVEMENT SURFACES UNLESS ADEQUATE PROVISIONS ARE MADE TO PREVENT SPILLAGE OF MATERIAL.

1

entation).pc3 Docun... -ns.ctb eral D Trans (Gene BMI PDF AutoCAD 5:10 PM


ура 2020

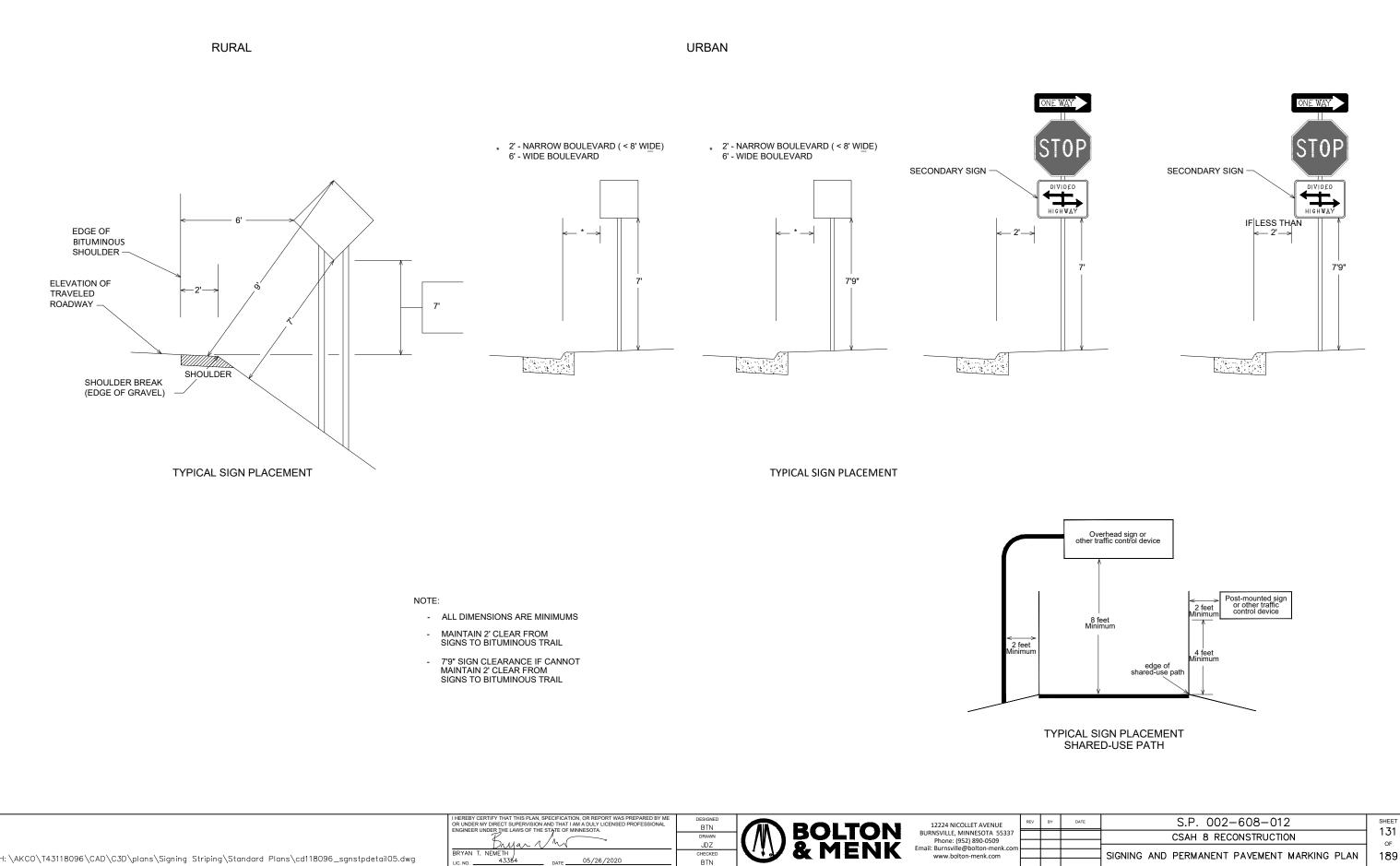
			CSAIL B RECONSTRUCTION				
_				0F			
			SIGNING AND PERMANENT PAVEMENT MARKING PLAN	189			
				100			

AutoCAD PDF (General Documentation).pc3 5:09 PM BMI Trans.ctb

zacharypa 5/27/2020

CHECKE BTN

05/26/2020

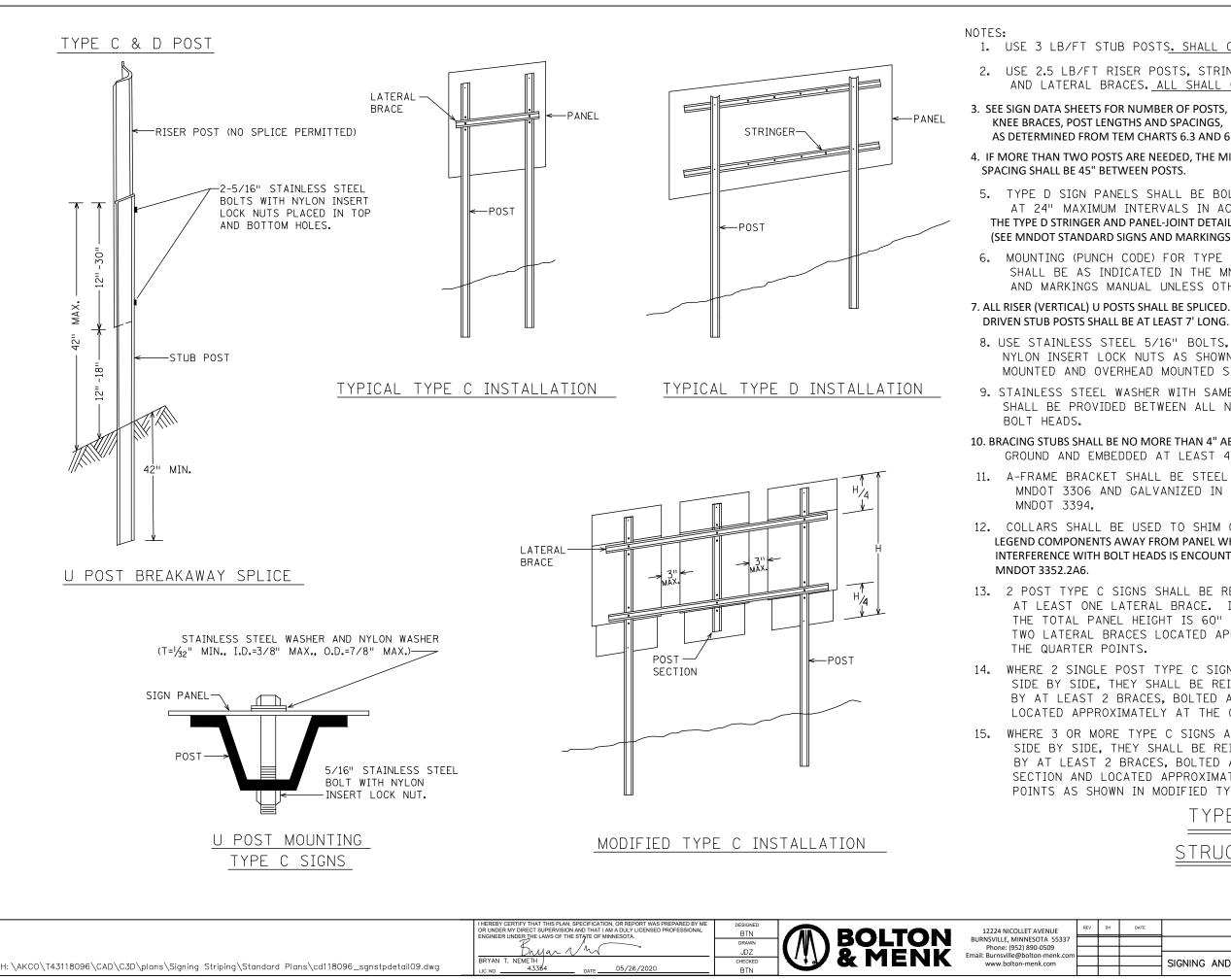

LIC. NO.

.ypq 2020 zacha 5/27,

H: \AKCO\T43118096\CAD\C3D\plans\Signing Striping\Standard Plans\cd118096_sgnstpdetail04.dwg

www.bolton-menk.com

SIGNING AND PERMANENT PAVEMENT MARKING PLAN 189


05/26/2020

DATE

LIC. NO.

rypa /2020 zachar 5/27/

				CSAH 8 RECONSTRUCTION				
								OF
		SIGNING	AND	AND PERMANENT PAVEMENT MARKING PL	PLAN	189		
						5 . 2/	100	

ctb Gene PM Auto(5:10

ура 2020

zacn 5/27

1. USE 3 LB/FT STUB POSTS. SHALL CONFORM TO MNDOT 3401.

2. USE 2.5 LB/FT RISER POSTS, STRINGERS, KNEE BRACES AND LATERAL BRACES. ALL SHALL CONFORM TO MNDOT 3401.

KNEE BRACES, POST LENGTHS AND SPACINGS, AS DETERMINED FROM TEM CHARTS 6.3 AND 6.4.

4. IF MORE THAN TWO POSTS ARE NEEDED, THE MINIMUM

5. TYPE D SIGN PANELS SHALL BE BOLTED TO STRINGERS AT 24" MAXIMUM INTERVALS IN ACCORDANCE WITH THE TYPE D STRINGER AND PANEL-JOINT DETAIL (SEE MNDOT STANDARD SIGNS AND MARKINGS MANUAL).

6. MOUNTING (PUNCH CODE) FOR TYPE C SIGN PANELS SHALL BE AS INDICATED IN THE MNDOT STANDARD SIGNS AND MARKINGS MANUAL UNLESS OTHERWISE SPECIFIED.

DRIVEN STUB POSTS SHALL BE AT LEAST 7' LONG.

8. USE STAINLESS STEEL 5/16" BOLTS, WASHERS AND NYLON INSERT LOCK NUTS AS SHOWN FOR ALL GROUND MOUNTED AND OVERHEAD MOUNTED SIGNS.

9. STAINLESS STEEL WASHER WITH SAME DIMENSIONS SHALL BE PROVIDED BETWEEN ALL NYLON WASHERS AND

10. BRACING STUBS SHALL BE NO MORE THAN 4" ABOVE

GROUND AND EMBEDDED AT LEAST 42".

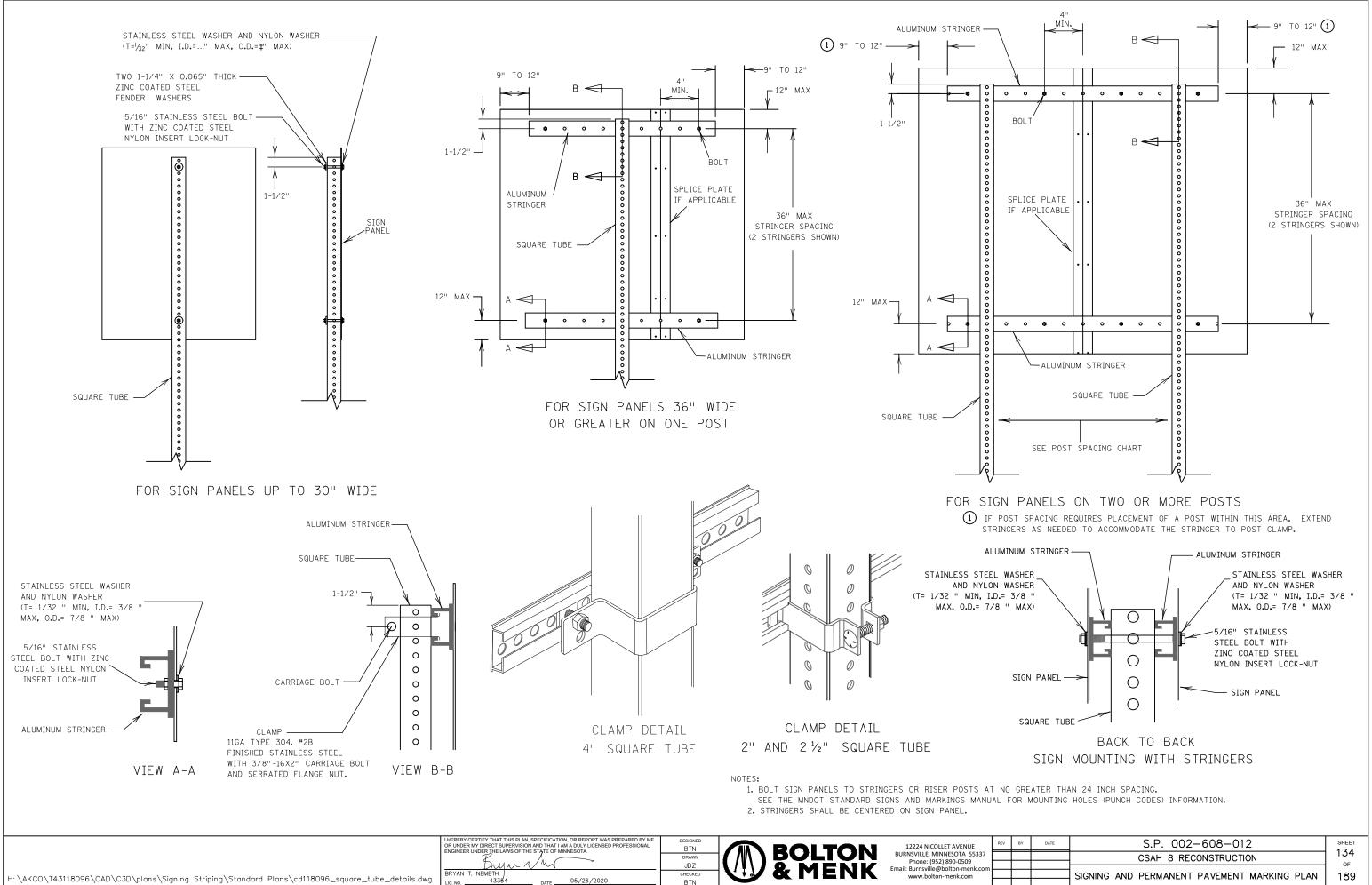
11. A-FRAME BRACKET SHALL BE STEEL CONFORMING TO MNDOT 3306 AND GALVANIZED IN ACCORDANCE WITH

12. COLLARS SHALL BE USED TO SHIM OVERLAYS AND LEGEND COMPONENTS AWAY FROM PANEL WHERE INTERFERENCE WITH BOLT HEADS IS ENCOUNTERED.

13. 2 POST TYPE C SIGNS SHALL BE REINFORCED WITH AT LEAST ONE LATERAL BRACE. INSTALLATIONS WHERE THE TOTAL PANEL HEIGHT IS 60" OR MORE SHALL HAVE TWO LATERAL BRACES LOCATED APPROXIMATELY AT

14. WHERE 2 SINGLE POST TYPE C SIGNS ARE INSTALLED SIDE BY SIDE, THEY SHALL BE REINFORCED LATERALLY BY AT LEAST 2 BRACES, BOLTED AT EACH POST AND LOCATED APPROXIMATELY AT THE QUARTER POINTS.

15. WHERE 3 OR MORE TYPE C SIGNS ARE INSTALLED SIDE BY SIDE, THEY SHALL BE REINFORCED LATERALLY BY AT LEAST 2 BRACES, BOLTED AT EACH POST AND POST SECTION AND LOCATED APPROXIMATELY AT THE QUARTER POINTS AS SHOWN IN MODIFIED TYPE C INSTALLATION.


Sheet 1 of 2

05 MAY 2017

V	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	152
				OF
			SIGNING AND PERMANENT PAVEMENT MARKING PLAN	189
				, , , , , , , , , , , , , , , , , , , ,

zacharypa 5/27/2020

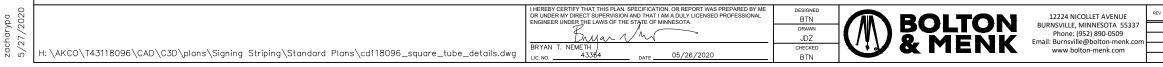
ctb Doc Tran , BMI PDF DM PM Auto(5:11

ура 2020

zach 5/27

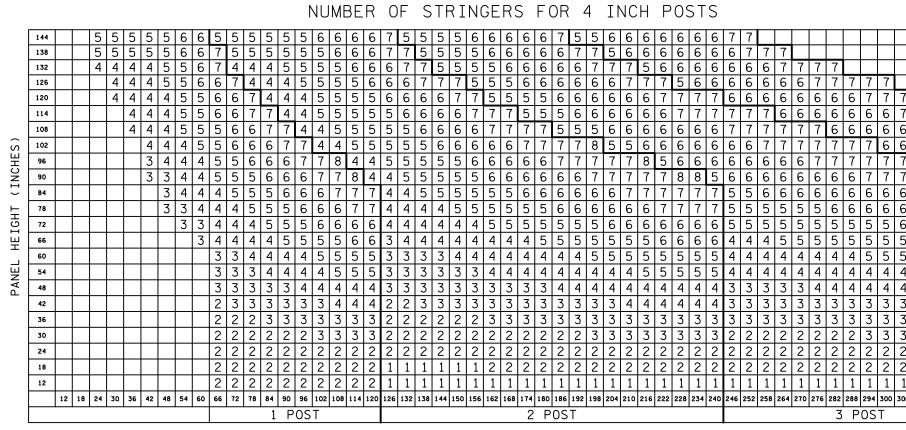
	I CSAH & RECONSTRUCTION I	
		OF
	SIGNING AND PERMANENT PAVEMENT MARKING PLAN	189
		100

STAINLESS STEEL LOCKING WASHER — STAINLESS STEEL WASHER - 3/8" STAINLESS STEEL \bigcirc Ø BOLT WITH ZINC COATED STEEL 0 NYLON INSERT \bigcirc 0 LOCK-NUT \bigcirc Q \geq \bigcirc 0 6" \bigcirc 0 \bigcirc 0 0 \bigcirc 0 \bigcirc 0 6 \bigcirc 0 6" \bigcirc Ó 0 SPLICE DETAIL

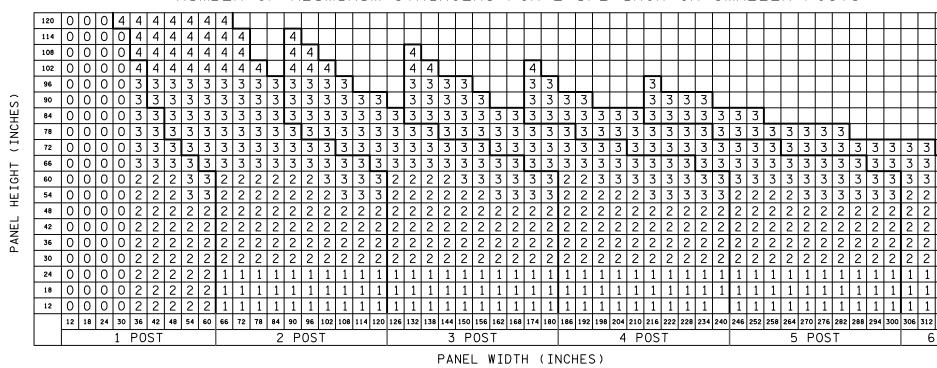

NO MORE THAN ONE SPLICE PER POST.

WHEN USED MUST BE PLACED AT LEAST 8 FEET ABOVE GROUND. THE PREFERRED PLACEMENT LOCATION IS BEHIND THE SIGN PANEL.

INTERIOR POST STUD SHALL BE ONE SIZE SMALLER FOR A TIGHT FIT. IF RISER POST IS 2-1/2", INTERIOR POST IS 2-3/16". IF RISER POST IS 2", INTERIOR POST IS 1-3/4".


PANEL				BE POS	-	_	-
WIDTH	2 POSTS	3 POSTS	4 POSTS	5 POSTS	6 POSTS	7 POSTS	8 P0ST
(IN)	(IN)	(IN)	(IN)	(IN)	(IN)	(IN)	(IN
24	12						
30	12						
36	12						
42	18						
48	24						
54	30						
60	36						
66	36						
72	42						
78	42						
84	48	40					
90	48	42					
96	48	42					
102	54	42					
108	54	42					
114	60	42					
120	60	48					
126	66	48					
132	66	48	42				
138	72	48	42				
144	72	48	42				
150	78	54	42				
156	78	54	42				
162	84	54	42				
168	84	60	48				
174	90	60	48	42			
180	90	60	48	42			
186	96		48	42			
		66					
192	96	66	48	42			
198	102	66	54	42			
204	102	72	54	42			
210	108	72	54	42			
216	108	72	54	48	42		
222	114	78	60	48	42		
228	114	78	60	48	42		
234	120	78	60	48	42		
240	120	84	60	48	42		
246		84	66	54	42		
252		84	66	54	42		
258		90	66	54	42	42	
264		90	66	54	48	42	
270		90	72	54	48	42	
276		96	72	60	48	42	
282		96	72	60	48	42	
288		96	72	60	48	42	
294		102	78	60	54	42	
300		102	78	60	54	42	42
306						42	
		102	78	66	54		42
312		108	78	66	54	48	42
318		108	84	66	54	48	42
324		108	84	66	54	48	42
330		114	84	66	60	48	42
336		114	84	72	60	48	42

DISTANCES ARE CENTER-TO-CENTER OF POSTS


entation).pc3 eral Docum Trans.ctb (Gen. BMI PDF AutoCAD F 5:11 PM

EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	135
				OF
_				
			SIGNING AND PERMANENT PAVEMENT MARKING PLAN	189
				100

PANEL WIDTH (INCHES)

NUMBER OF ALUMINUM STRINGERS FOR 2 1/2 INCH OR SMALLER POSTS

HEREBY CERTIFY THAT THIS PLAN. SPECIFICATION, OR REPORT WAS PREPARED BY ME IN UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL 12224 NICOLLET AVENUE BTN BOLTON DER THE LAWS OF THE STATE OF MINNESOTA BURNSVILLE, MINNESOTA 55337 DRAW Phone: (952) 890-0509 Email: Burnsville@bolton-menk.co JDZ DAMar BRYAN T. NEMETH l:\AKC0\T43118096\CAD\C3D\plans\Signing Striping\Standard Plans\cd118096_square_tube_details.dwg www.bolton-menk.com 05/26/2020 BTN IC NO

AutoCAD PDF (General Documentation).pc. 5:11 PM BMI Trans.ctb

> ура 2020

> > 5/27

7	7	7				
7	7	7	7	7	7	\vdash
5	6	6	7	7	7	OS
5	6	6	6	6	6	4 POST
7	7	8	8	6	6	4
7	7	7	7	7	7	
5	7	7	7	7	7	
5	6	6	6	6	7	
5	6	6	6	6	6	
5	5	5	5	6	6	
5	5	5	5	5	5	
1	4	4	5	5	5	
1	4	4	4	4	4	
3	4	4	4	4	4	
3	3	3	3	3	3	
3	3	3	3	3	3	
2	2	2	2	2	2	
2	2	2	2	2	2	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7766777665544433221	7766877665544433221	776877665554433221	776677666554433221	776677766554433221	
96	312	318	324	330	336	
_						

3	3	3	3
3	3	3	3
2	3	3	3
2	2	2	2
2	2	2	2
2	2	2	2
2	2	2	2
1	1	1	1
3 2 2 2 2 2 2 2 1 1 1	3 3 2 2 2 2 2 1 1	<u> </u>	3 3 2 2 2 2 1 1
	1		
318	324	330	336
Ρ	0S	Т	

EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	136 OF
			SIGNING AND PERMANENT PAVEMENT MARKING PLAN	189
				105

ALVAGE a	INSTALL	SIGN TYPE SPECIAL	к			
		2564				
SIGN	QUANTITY	S.P. 002-608-012	DESCRIPTION			
NUMBER		TOTAL				
	EACH	(EACH)	1			
S-201	1	1	WATCH FOR BUSES ON SHOULDER			
S-202	1	1	UNIV. SERV. RD/OSBORNE RD			
S-203	1	1	5TH ST NE/OSBORNE RD			
S-204	4	4	TRANSIT SIGN 824			
S-205	1	1	TERRACE RD/OSBORNE RD			
S-206	1	1	MADISON ST/OSBORNE RD			
S-207	1	1	MONROE ST/OSBORNE RD			
S-208	1	1	QUINCY ST/OSBORNE RD			
S-209	7	7	TRANSIT SIGN 10			
S-210	1	1	JACKSON ST NE (GREEN)/OSBORNE H			
S-211	1	1	JACKSON ST (BLUE)/OSBORNE RD			
S-212	1	1	VAN BUREN ST (GREEN)/OSBORNE R			
S-213	1	1	VAN BUREN ST (BLUE)/OSBORNE RI			
S-214	1	1	ABLE ST/OSBORNE RD			
S-215	1	1	BAKER ST/OSBORNE RD			
S-216	1	1	TYLER ST/OSBORNE RD			
S-217	1	1	TAYLOR ST/OSBORNE RD			
S-218	1	1	HWY 65 W SERV RD/ OSBORNE RD			
	TOTALS	27				

OBJECT MARKER & DEL	MARKER & DELINEATORS			
PANEL CODE NUMBER	S.A.P. 002-608-012	LOCATION		
DELINEATOR TYPE RECOVERABLE	8	MEDIAN (YELLOW)		
TOTALS	8			

					SIGN	PANELS I	LIPE C							J
				POST				SI	GN PANE	LS		2564		
SIGN NUMBER	QUANTITY	NUMBER OF POSTS	POST TYPE	RISER POST SIZE	SURFACE TYPE	LENGTH	MTG. HT. (1)		SIZE		AREA	S.P. 002-608-012 TOTAL	PANEL CODE NUMBER	DESCRIPTION
	EACH	10515	11115	(INCHES)	11115	(FT)	(FT)		(IN)		(SQ FT)	(SQ FT)		
C-1	2	1	ST	2 1/2	SOIL	13	7	24	X X	24	4.00	8	R8-3	NO PARKING
C-2	6	1	ST	2 1/2	CONCRETE	15	7	24	X	30	5.00	30	R4-7c	KEEP RIGHT
0 2	0	1	51	2	CONCIDENTE	10	1	27		18	5.00	0	X4-2	DELINEATOR
C-3	4	1	ST	2	SOIL (2)	13	7	30	X	30	6.25	25	R5-1	DO NOT ENTER
C-4	3	1	ST	2	CONCRETE	13	7	36	X	12	3.00	9	R6-1	ONE WAY
C-4 C-5	3	1	ST	2 1/2	SOIL	14	7	36	X	12	3.00	9	R6-1 R6-1	ONE WAY
0-5	5	T	51	2 1/2	2011	14	1	30	X	30	6.25	19	R1-1	STOP
C-6	1	1	ST	2	CONCRETE	14	7	24	X	12	2.00	2	M3-2a	EAST
0-0	T	T	ST	2	CONCIDENTE	14	1	24	X	24	4.00	4	M1-6	ANOKA COUNTY 8
C-7	1	1	ST	2 1/2	CONCRETE	15	7	36	X	36	9.00	9	W9-1	RIGHT LANE ENDS
C-7	T	T	51	2 1/2	CONCRETE	15	1	24	X	18	3.00	3	W20-100P	100 FEET
C-8	4	1	ST	2	SOIL	13	7	30	X	30	6.25	25	R3-X1	RIGHT TURN LANE
C-8 C-9	3	1	ST	2 1/2	SOIL (3)	15	7	24	X	30	5.00	15	R2-1	
C-9	3	Ť	ът		201T (2)	Ст	/					15	R2-1 R8-3	SPEED LIMIT
C 10	1	1	ST	2	CONCRETE	13	7	24 30	X	24 30	4.00	6		NO PARKING LEFT TURN LANE
C-10			ST	2 1/2			7				6.25		R3-X2	
C-11	2	1	ът		CONCRETE	14	/	24	X	24	4.00	8	R3-4	NO U-TURN
								24	X	30	5.00		R4-7c	KEEP RIGHT
0.10		1	0.00		0.011	10		20	X	18	0.00	0	X4-2	DELINEATOR
C-12	2	1	ST	2	SOIL	13	7	30	X	30	6.25	13	R3-7R	RIGHT LANE MUST TURN H
C-13	1	1	ST	2	SOIL	16	/	21	X	15	2.19		M2-1a	JUNCTION
								24	X	24	4.00	4	M1-5a	MINNESOTA 47
~ 14		-	0.5	0.1/0	0.077	10		24	X	24	4.00	4	R8-3	NO PARKING
C-14	3	1	ST	2 1/2	SOIL	13	7	54	X	30	11.25	34	R3-8ACA	LEFT/THRU/RIGHT ONI
C-15	16	1	ST	2	SOIL	13	7	30	X	30	6.25	100	R1-1	STOP
C-16	1	1	ST	2	SOIL	15	7	54	X	30	11.25	11	R3-8ACA	LEFT/THRU/RIGHT ONI
								24	X	24	4.00	4	R8-3	NO PARKING
C-17	1	1	ST	2	SOIL	15	7	36	X	30	7.50	8	R3-8ACA	LEFT/THRU ONLY
	-							24	X	24	4.00	4	R8-3	NO PARKING
C-18	3	1	ST	2	SOIL	13	7	30	X	30	6.25	19	W3-3	SIGNAL AHEAD
C-19	17	1	ST	2	SOIL	12	7	18	X	18	2.25	38	R1-1	STOP
C-20	1	1	ST	2	SOIL	13	7	24	X	24	4.00	4	R3-2	NO LEFT TURN
C-21	2	1	ST	2	SOIL	13	7	36	X	30	7.50	15	R3-8ACA	LEFT/THRU ONLY
C-22	2	1	ST	2 1/2	SOIL	17	7	42	X	12	3.50	7	R4-X7P	BEGIN
								24	X	36	6.00	0	R3-9b	CENTER LEFT TURN LA
~ ^ ^ ^	<u>^</u>	-		0.1/0		10		24	X	24	4.00	8	R8-3	NO PARKING
C-23	2	1	ST	2 1/2	SOIL	17	7	42	X	12	3.50	7	R4-X7P	END
								24	X	36	6.00	0	R3-9b	CENTER LEFT TURN LA
a 0.1		-		0.1/0		1.5		24	X	24	4.00	8	R8-3	NO PARKING
C-24	4	1	ST	2 1/2	SOIL	15	7	30	X	30	6.25	25	W11-2	PEDESTRIAN
a 05		-	0.77	0.1/0		1.0		24	X	18	3.00	12	W20-100P	150 FEET
C-25	7	1	ST	2 1/2	SOIL	16	7	24	X	36	6.00	42	R3-9b	CENTER LEFT TURN LA
		-		0.1/0				24	X	24	4.00	28	R8-3	NO PARKING
C-26	2	1	ST	2 1/2	SOIL	17	7	36	X	36	9.00	18	S1-1	SCHOOL PEDESTRIAN
~ ~ =		-						36	X	36	E 0.5			SCHOOL SPEED ZONE AH
C-27	2	1	ST	2	SOIL	13	7	24	X	30	5.00	10	S5-2	END SCHOOL ZONE
C-28	3	1	ST	2	SOIL	13	7	24	X	30	5.00	15	R2-1	SPEED LIMIT
C-29	2	1	ST	2 1/2	SOIL	15	7	36	X	36	9.00	18	S1-1	SCHOOL PEDESTRIAN
			~_					24	X	18	3.00	6	W20-100P	150 FEET
C-30	1	1	ST	2 1/2	SOIL	15	7	30	X	30	6.25	6	R1-1	STOP
			~					18	X	24	3.00	3		NO PARKING SCHOOL HO
C-31	1	1	ST	2	SOIL	14	7	21	X	15	2.19	2	M2-1a	JUNCTION
								24	X	24	4.00	4	M1-5a	MINNESOTA 65
C-32	1	1	ST	2 1/2	SOIL	16	7	30	X	30	6.25	6	R5-1	DO NOT ENTER
								30	X	30	6.25	6	R5-1	DO NOT ENTER
C-33	1	1	ST	2	SOIL	14	7	24	Х	12	2.00	2	M3-2a	WEST
				1			1	24	X	24	4.00	4	M1-6	ANOKA COUNTY 8

NOTES:

MOUNTING.

GENERAL NOTES:

(2) 2 WILL BE MOUNTED IN SOIL. 2 WILL BE MOUNTED IN CONCRETE. (3) 2 WILL BE MOUNTED IN SOIL. 1WILL BE MOUNTED IN CONCRETE.

1. POST LENGTHS ARE APPROXIMATE AND INCLUDE EMBEDMENT, BUT DO NO INCLUDE ADDITIONAL LENGTH REQUIRED FOR SPLICE.

2. SEE SHEETS 131 TO 132 FOR STRUCTURAL DETAILS.

3. SEE STANDARD SIGNS MANUAL FOR PUNCHING CODE AND DETAILED DRAWINGS OF TYPE C SIGN PANELS.

(1) MOUNTING HEIGHT IS 7' MINIMUM. SEE SIGNING DETAIL SHEEET 174 FOR TYPICAL

4. FOR MOUNTING DETAILS, SEE SHEET 131 TO 132.

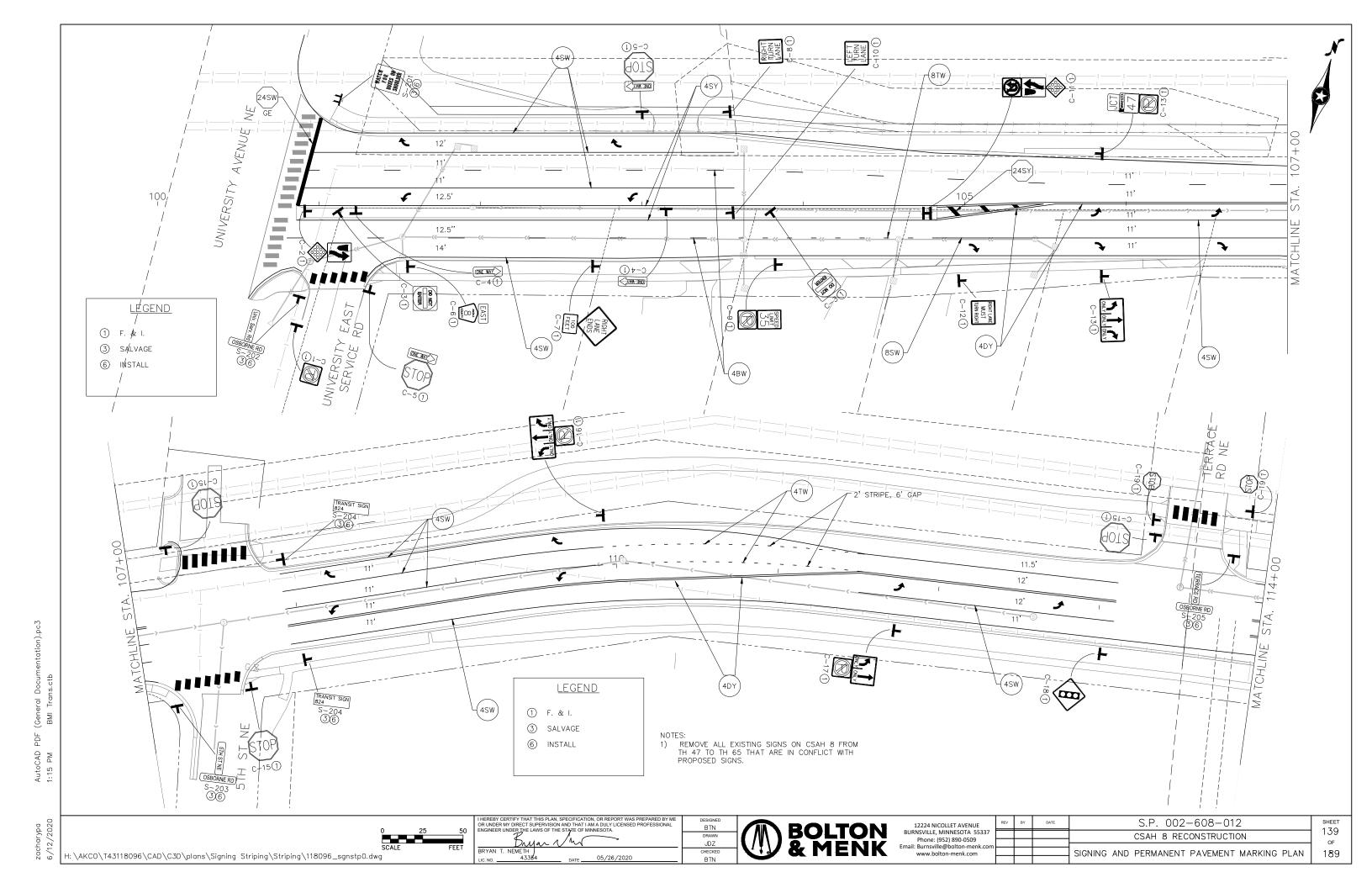
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA. BRYAN T. NEMETH UC. NO. 43384 DATE 05/26/2020 12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com www.bolton-menk.com DESIGNE taylorts 6/3/2020 **BOLTON** & MENK BTN DRAWN JDZ CHECKED BTN $\label{eq:H:AKCO}T43118096\CAD\C3D\plans\Signing\Striping\Striping\118096_sgnstp0.dwg$

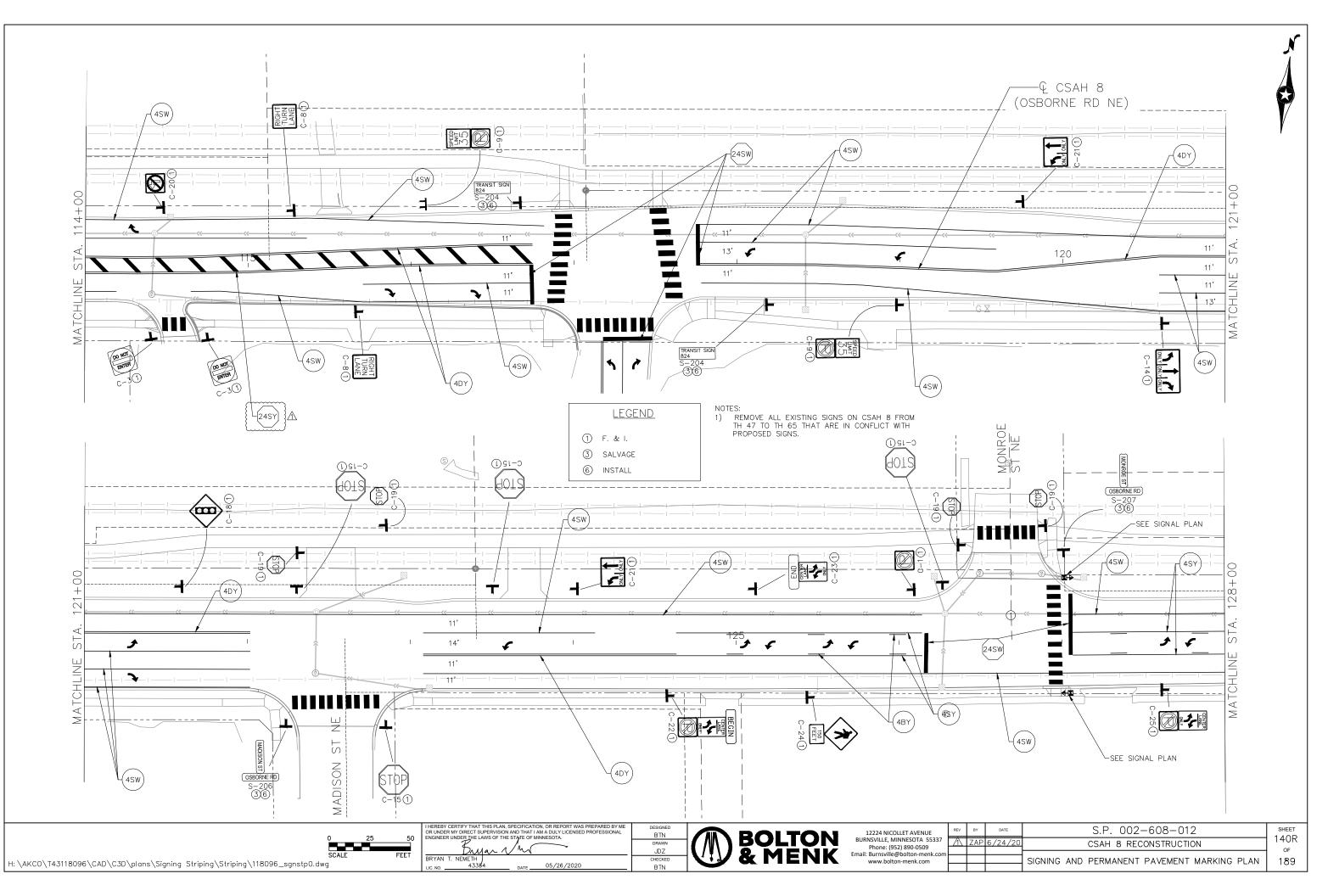
EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	137
				OF
			SIGNING AND PERMANENT PAVEMENT MARKING PLAN	189
				100

	PERMANENT PAVEMENT MARKINGS AND STRIPING										Т		
	2582	2582	2582	2582	2582	2582	2582	2582	2582	2582	2582	2582	2582
ROADWAY	PAVEMENT MESSAGE (5) PREFORM THERMOPLASTIC	PAVEMENT MARKING SPECIAL (4)	4" SOLID LINE MULTI-COMPONENT (6)	4" SOLID LINE MULTI-COMPONENT	4" SOLID LINE MULTI-COMPONENT	4" DOUBLE SOLID LINE MULTI-COMPONENT	4" BROKEN LINE (1) MULTI-COMPONENT	4" BROKEN LINE (1) MULTI-COMPONENT	4" DOTTED LINE MULTI-COMPONENT	8" DOTTED LINE (2) MULTI-COMPONENT	24" SOLID LINE PREFORM THERMO GROUND IN ESR	CROSSWALK PREFORM THERMOPLASTIC (3)	CROSSWALK PREFORM THERMOPLASTIC GROUND IN ENHANCED SKID RESISTANCE (3)
			WHITE	WHITE	YELLOW	YELLOW	WHITE	YELLOW	WHITE	WHITE	WHITE	WHITE	WHITE
	SQ FT }	SQ FT	LIN FT	LIN FT	LIN FT	LIN FT	LIN FT	LIN FT	LIN FT	LIN FT	LIN FT	SQ FT	SQ FT
CSAH 8	874	945	850	11511	3980	2363	240	570	83	56	91	3926	676
TOTALS	874 5	945	850	11511	3980	2363	240	570	83	56	91	3926	676
NOTES:	Jummen	A	Cumun	A			1		1				

(1) LENGTH DOES NOT INCLUDE GAPS. BROKEN LINE STRIPE IS 10' STRIPE WITH A 40' GAP.

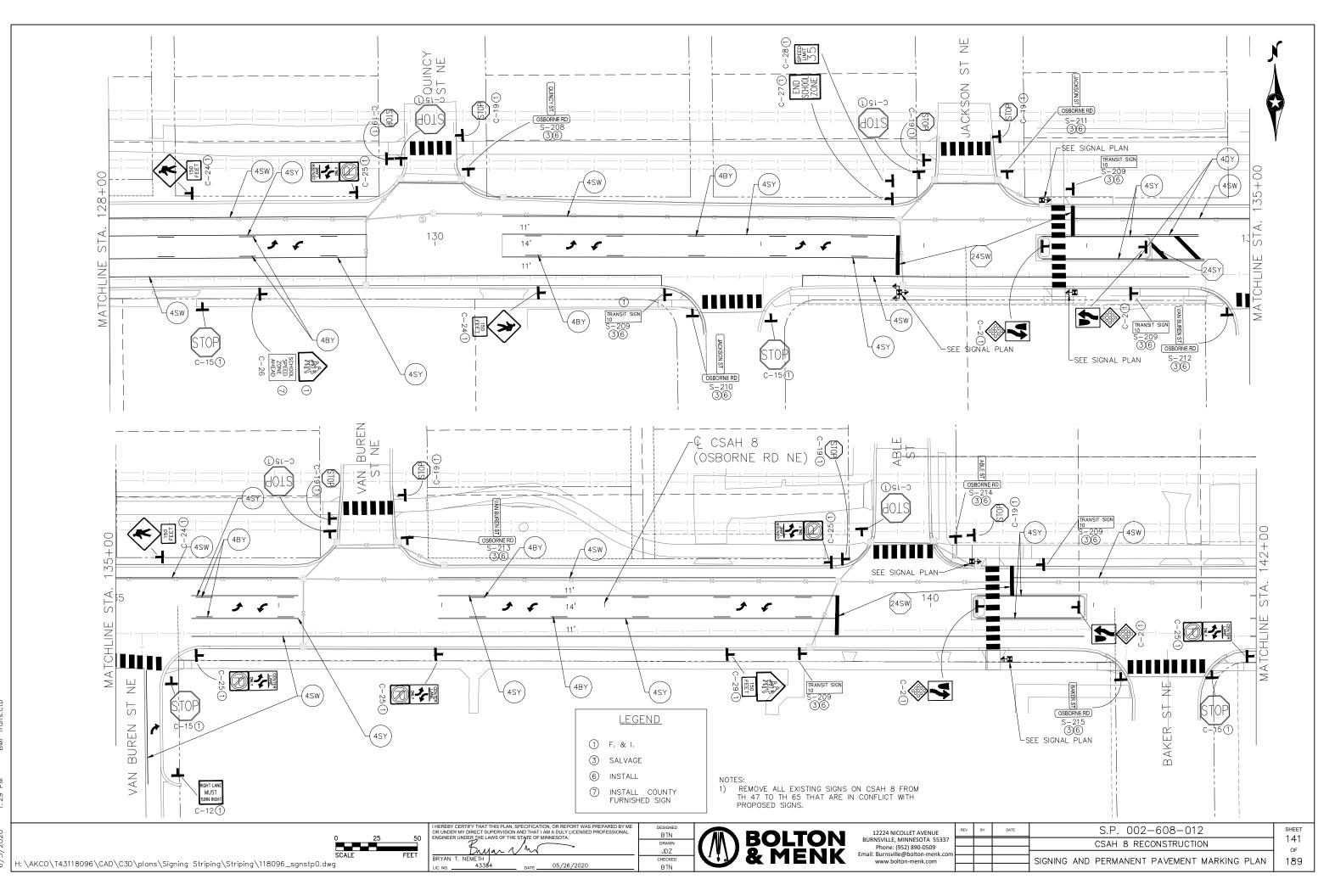
(2) LENGTH DOES NOT INCLUDE GAPS. DOTTED LINE STRIPE IS 3' STRIPE WITH A 12' GAP UNLESS NOTED OTHERWISE IN PLAN SHEET.

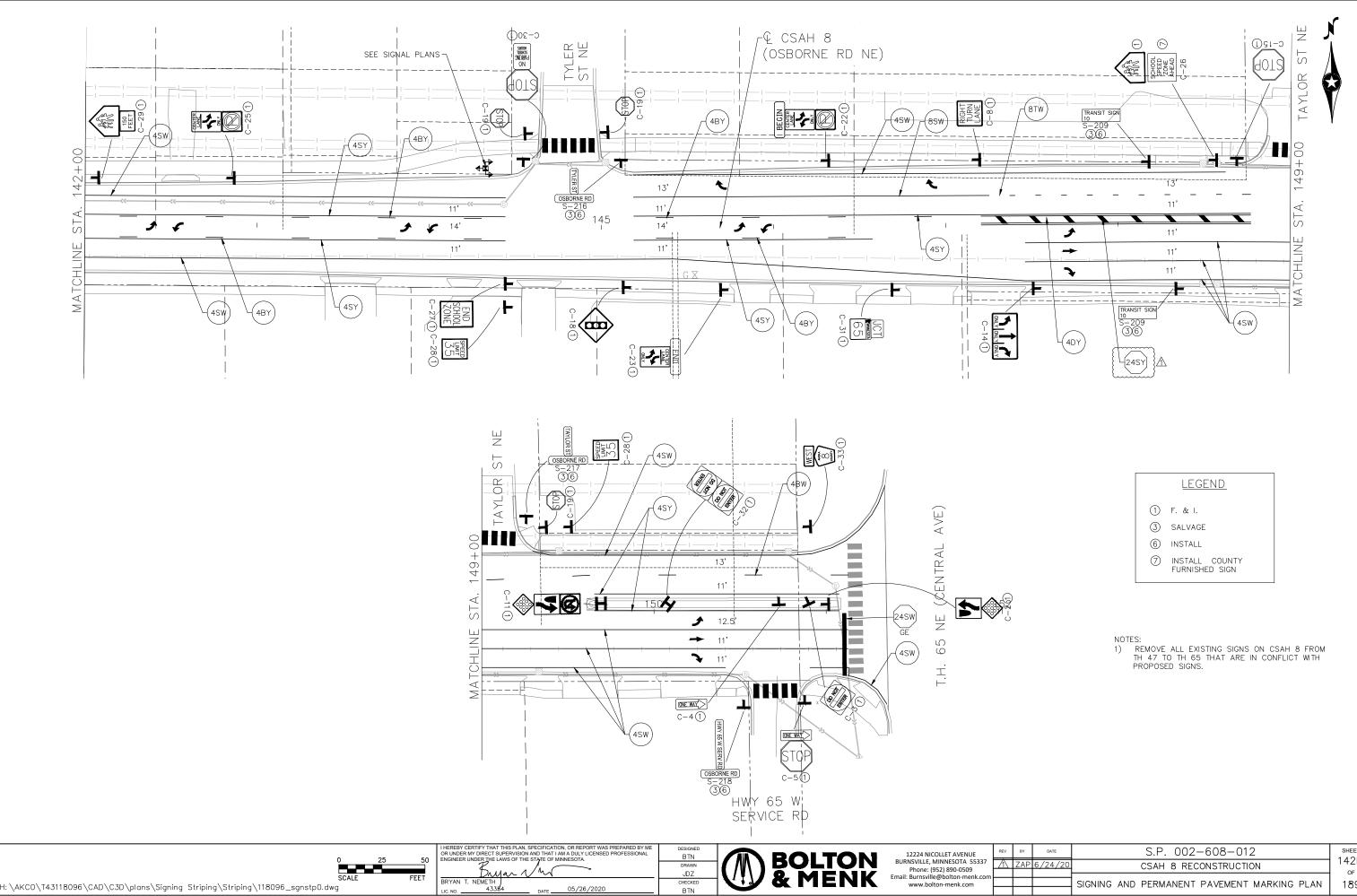

(3) CROSSWALK BLOCKS ARE 18 SQ FT.


(4) INCLUDES BOTH YELLOW AND WHITE GORE STRIPING AND STOP BARS.

(5) INCLUDES BOTH YELLOW AND WHITE PAVEMENT MESSAGES.
 (6) LENGTH IS DOUBLED TO INCLUDE 8" SOLID LINE WHITE MULTI-COMPONENT.

ра 020		I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DESIGNED BTN		BOLTON	12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 55337	REV
hary :4/2		Bryan Vm	drawn JDZ	(//\`	/ O MENU/	Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com	
zac 6/2	H:\AKC0\T43118096\CAD\C3D\plans\Signing Striping\Striping\118096_sgnstp0.dwg	BRYAN T. NEMETH A DATE 05/26/2020	CHECKED B TN			www.bolton-menk.com	

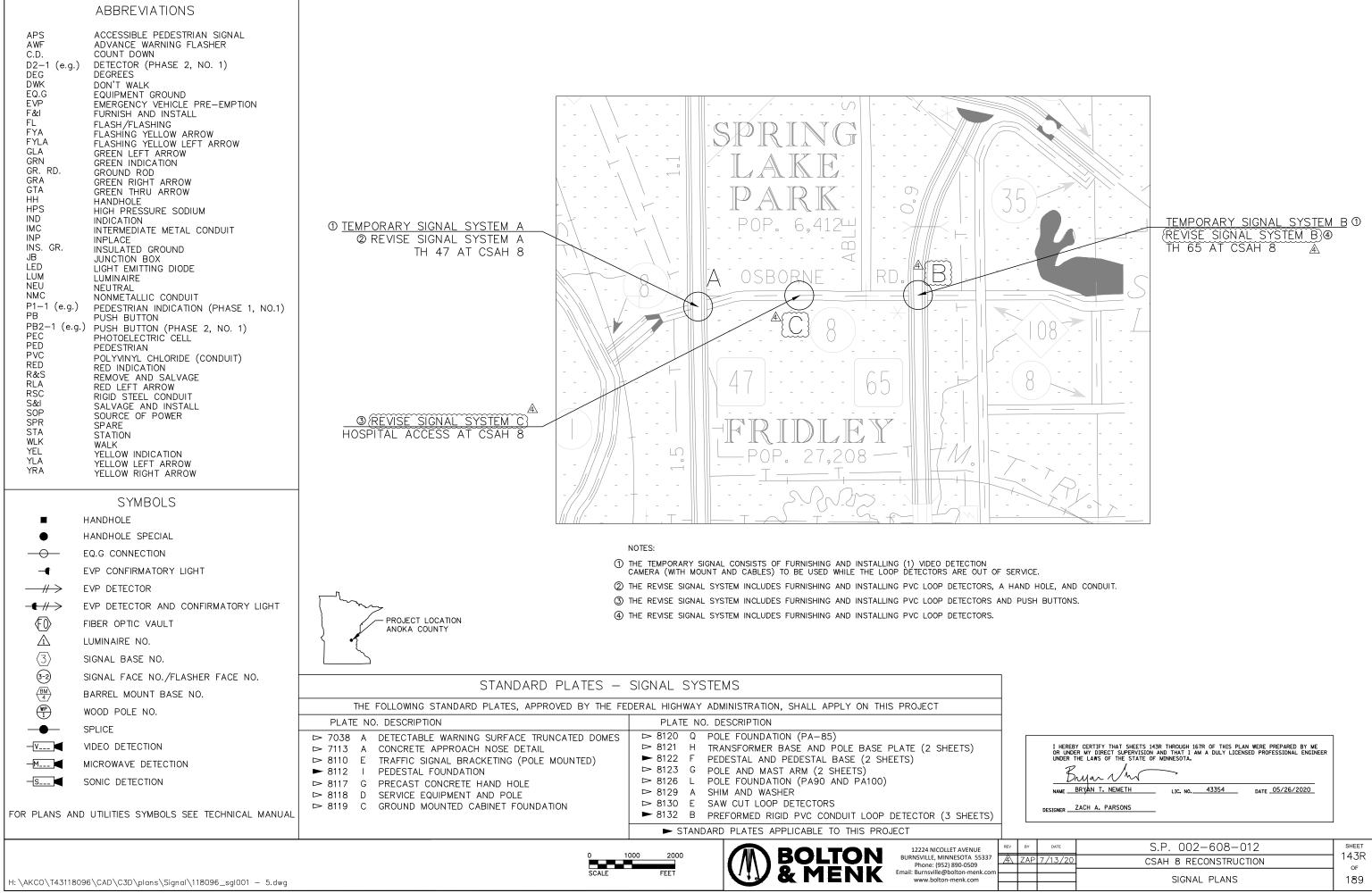

EV	BY	DATE	S.P. 002-608-012				
î\	ZAP	6/24/20	CSAH 8 RECONSTRUCTION	138R			
				0F			
			SIGNING AND PERMANENT PAVEMENT MARKING PLAN	189			
				100			



AutoCAD PDF (General Documentation).pc3 12:52 PM BMI Trans.ctb

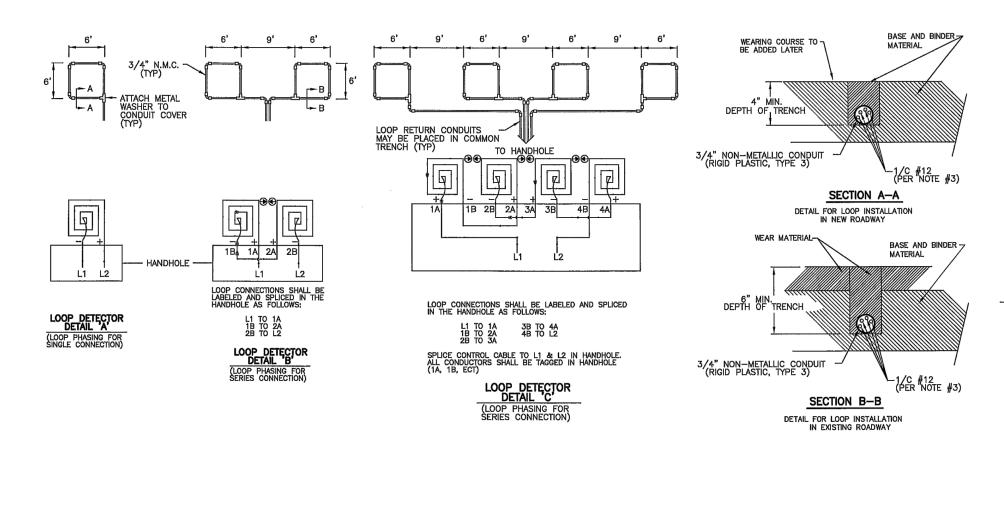
> zacharypa 6/24/2020

taylorts AutoCAD PDF (General Documentation).pc3 6/3/2020 1:29 PM BMI Trans.ctb



entation).pc3 AutoCAD PDF (General Docum 12:52 PM BMI Trans.ctb

zacharypa 6/24/2020


	LEGEND
1	F. & I.
3	SALVAGE
6	INSTALL
7	INSTALL COUNTY FURNISHED SIGN

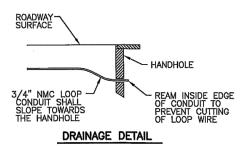
v	BY	DATE	S.P. 002-608-012	SHEET
V	ZAP	6/24/20	CSAH 8 RECONSTRUCTION	142R
				OF
			SIGNING AND PERMANENT PAVEMENT MARKING PLAN	189
				100

ура 2020

BY	DATE	S.P. 002-608-012	SHEET
ZAP	7/13/20	CSAH 8 RECONSTRUCTION	143R
		SIGNAL PLANS	₀ 189
		SIGNAL TEANS	105

NOTES:

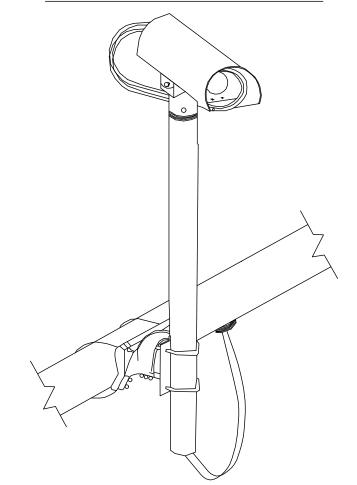
1. USE THIS LOOP DETECTOR DETAIL FOR REVISE SIGNAL SYSTEM B. 2. USE MNDOT STANDARD PLATE NO. 8132 (PREFORMED RIGID PVC CONDUIT LOOP DETECTORS) FOR REVISE SIGNAL SYSTEMS A & C.



H:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl001 - 5.dwg

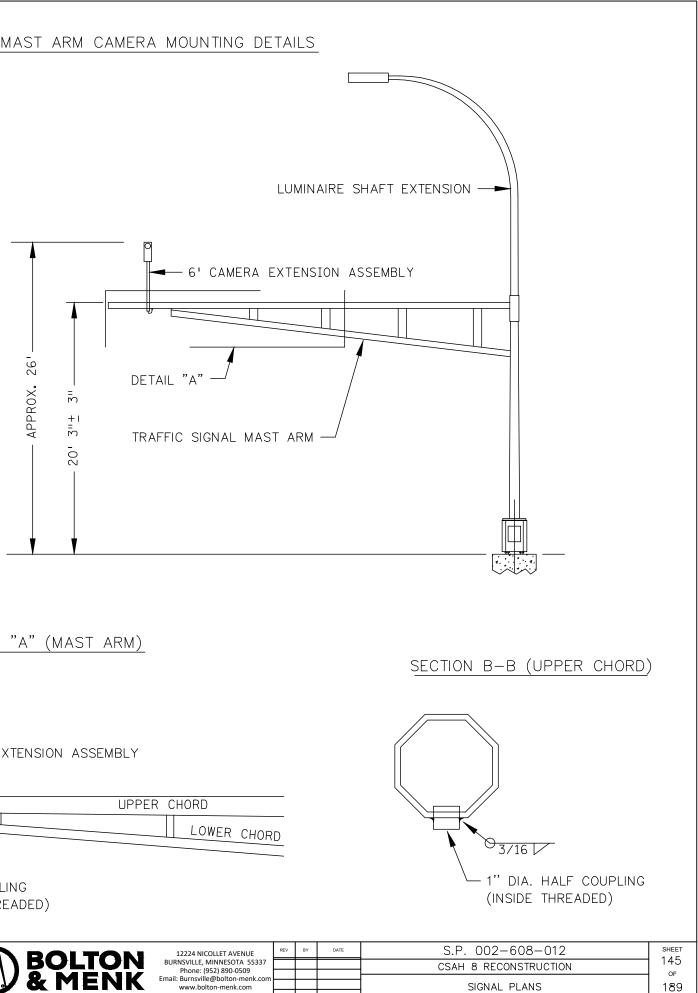
rypa /2020

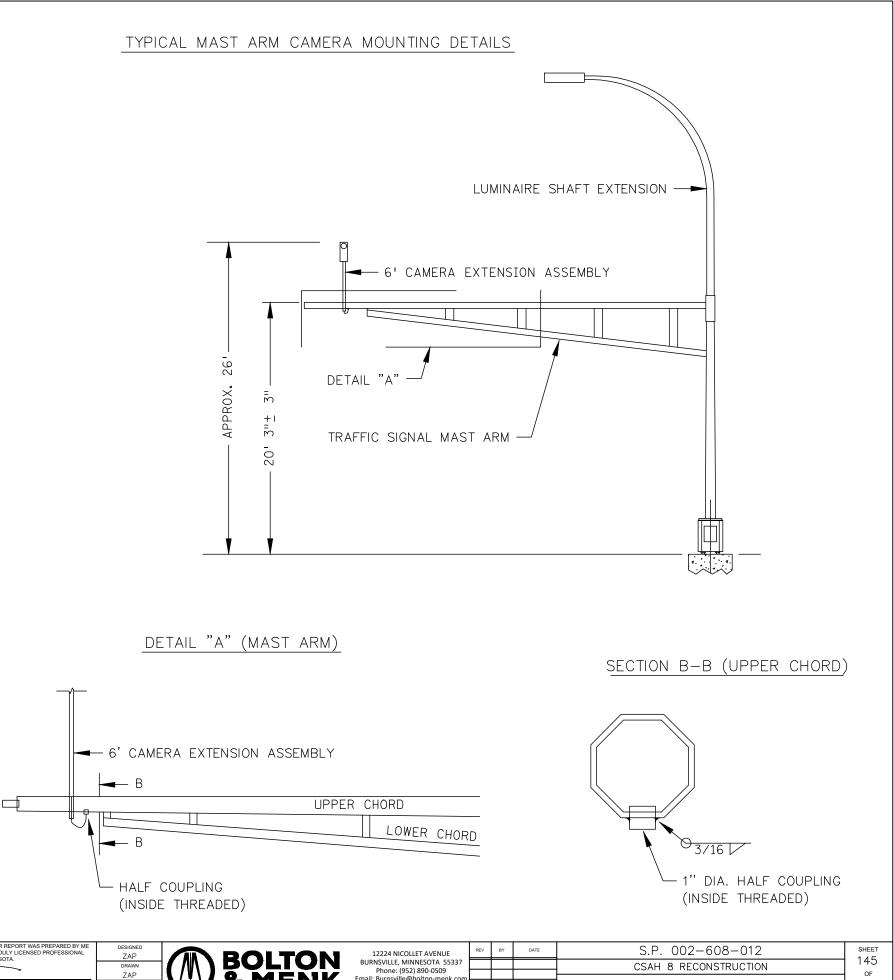
zachar 5/26/

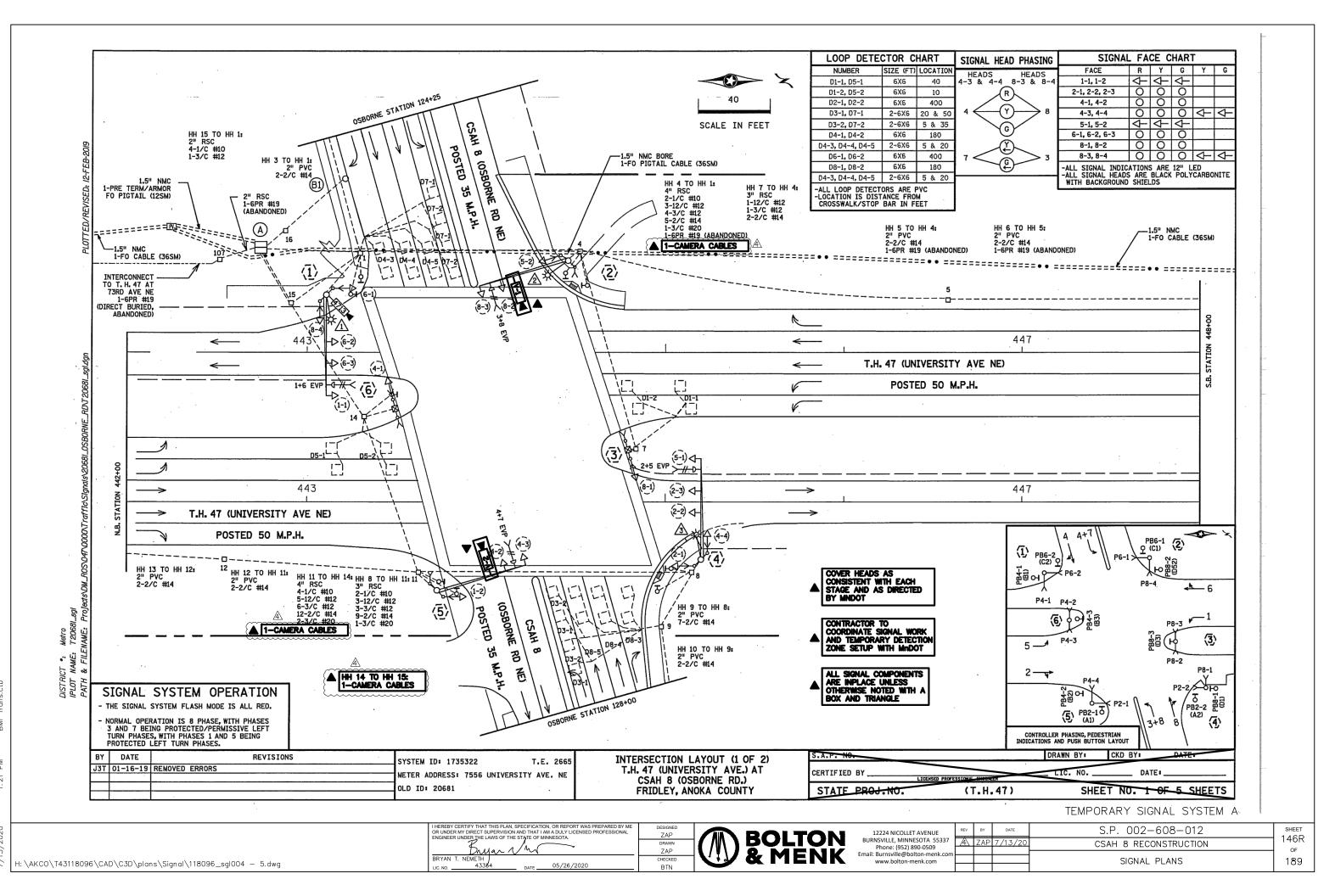


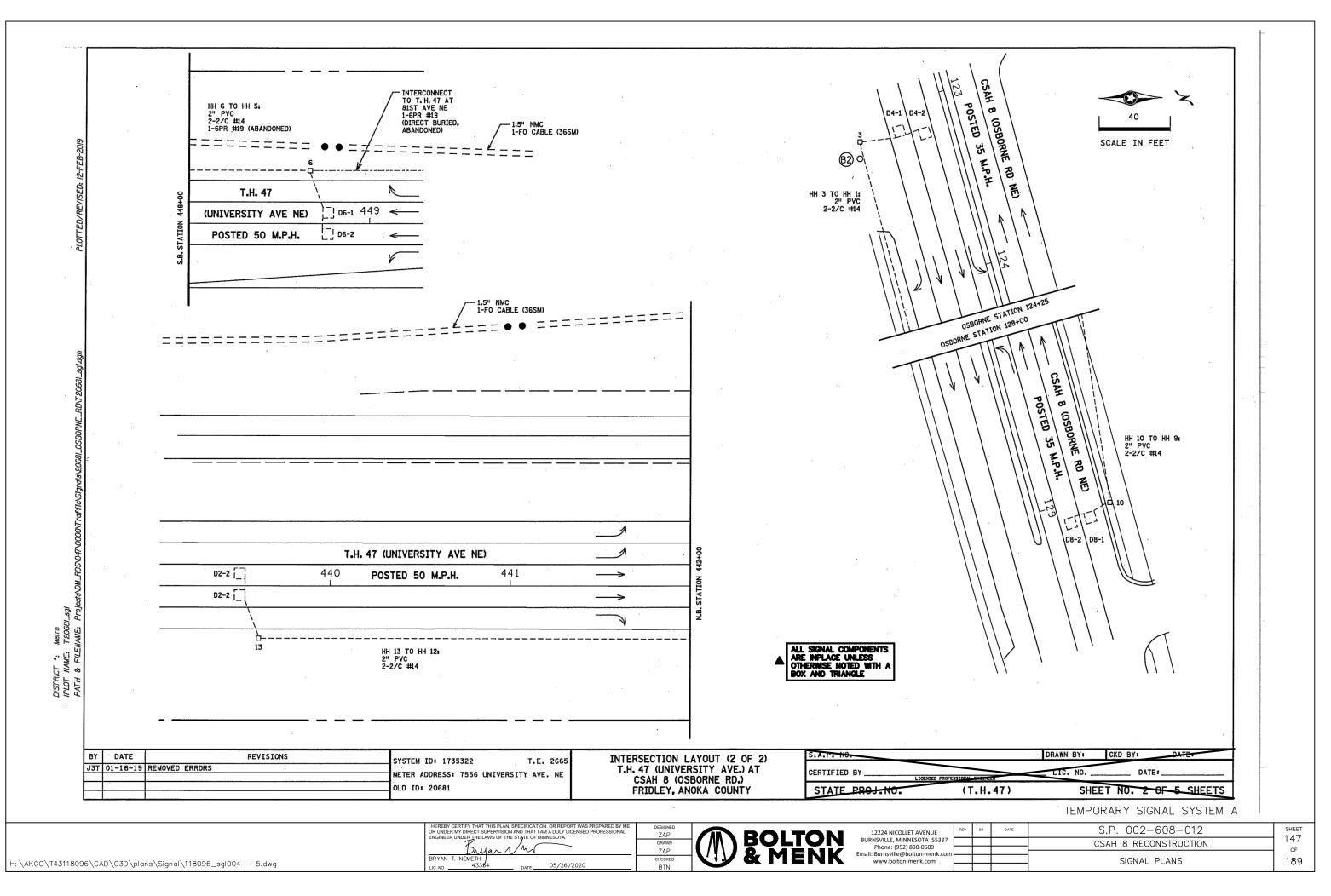
LOOP DETECTOR WIRING

- 1) ALL CORNERS SHALL BE 90' CONDUIT BENDS.
- CONNECT WIRES IN HANDHOLES USING SPLICE KIT METHOD DESCRIBED IN THE SPECIAL PROVISIONS.
- 3) LOOP DETECTOR WIRES SHALL BE #12 AWG CROSSED LINKED POLYETHYLENE (XLP). SEE SPECIAL PROVISIONS.
- 4) LOOP LEAD IN WIRES SHALL BE TWISTED A MIN. OF (5) TURNS PER FOOT THROUGH THE CONDUIT TO THE HANDHOLE.
- 5) NMC DESIGNATES NON-METALLIC CONDUIT (SPEC. 3803)
- 6) LOOPS 6' x 6' THRU 6' x 14' SHALL HAVE (4) TURNS.
- 7) LOOPS 6' x 15' AND LARGER SHALL HAVE (2) TURNS.

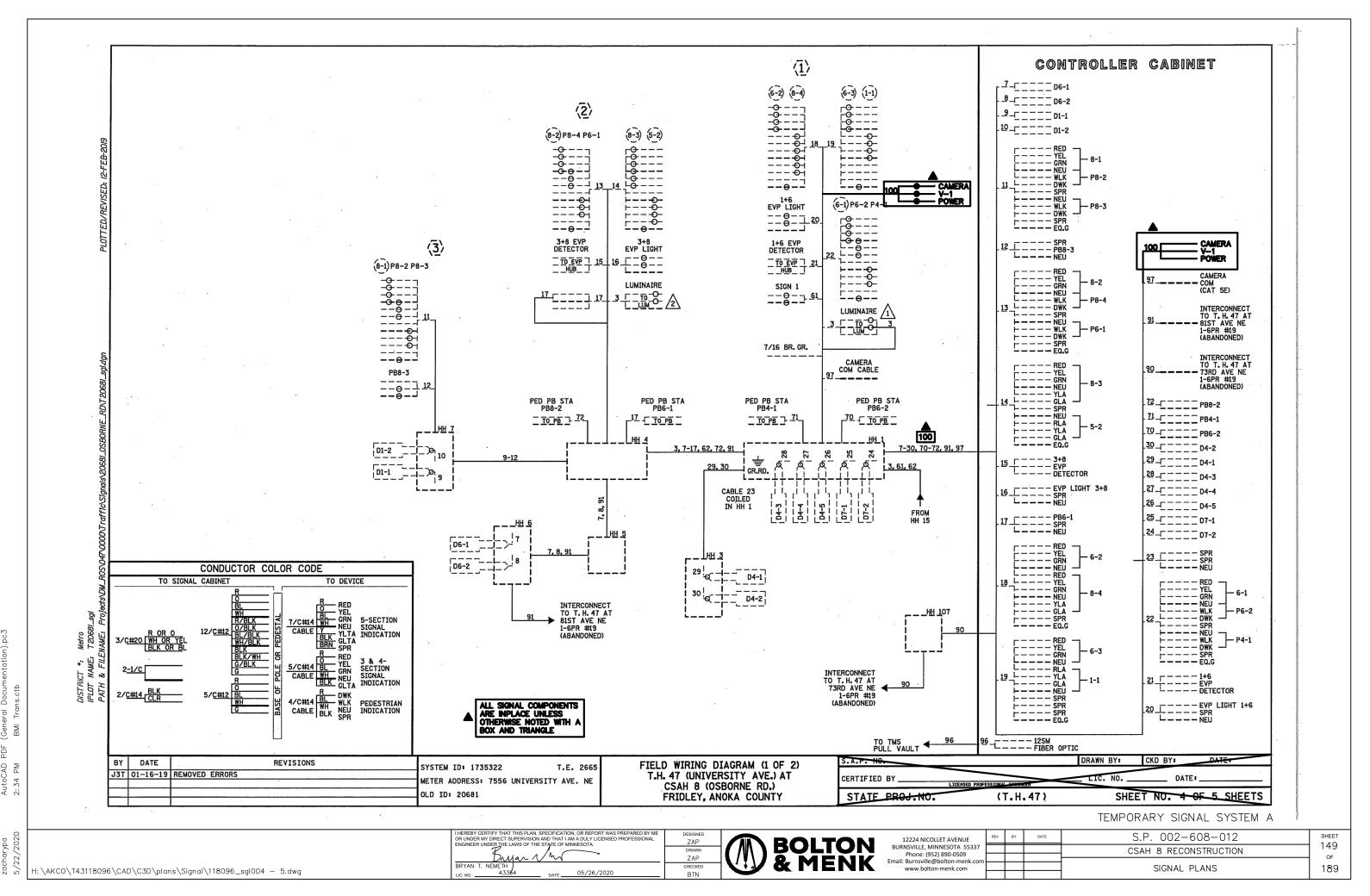

BY	DATE	S.P. 002-608-012	SHEET
		CSAH 8 RECONSTRUCTION	144 of
		SIGNAL PLANS	189
			100


MAST ARM CAMERA INSTALLATION


NOTES:

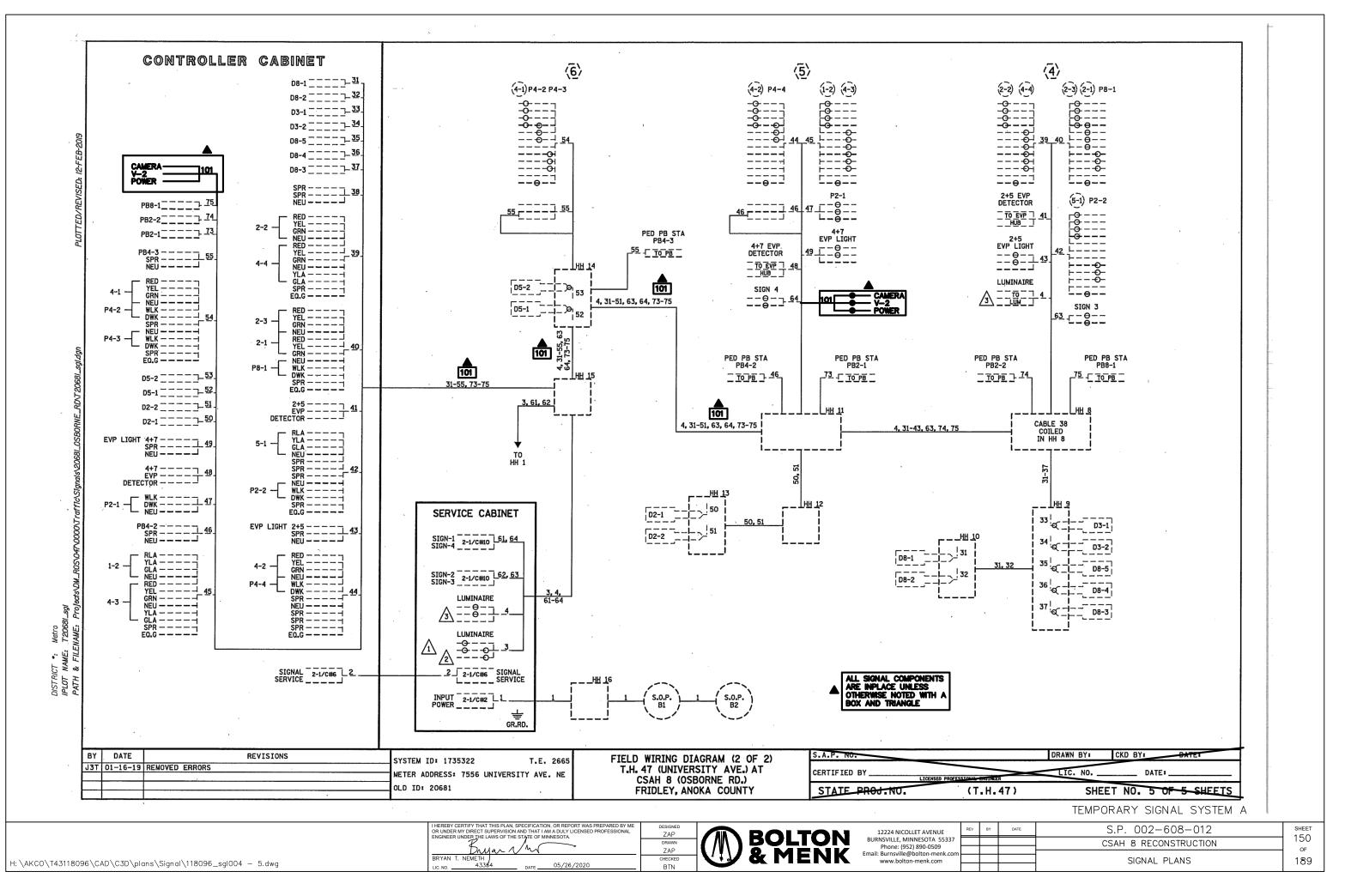

1) THE CONTRACTOR SHALL FURISH AND INSTALL ALL VIDEO CAMERA DETECTION FOR TEMPORARY SIGNAL SYSTEMS A AND B. THE COMPONENTS MAY BE NEW OR USED AND WILL REMAIN THE PROPERTY OF THE CONTRACTOR WHEN THE SIGNALS ARE REMOVED. SEE THE SPECIAL PROVISIONS FOR VIDEO DETECTION SYSTEM REQUIREMENTS.

020		I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DESIGNED ZAP	TON	12224 NICOLLET AVENUE
22/2		Bryan Mm	drawn ZAP		BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com
2/2	H:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl004 - 5.dwg	BRYAN T. NEMETH LIC. NO. 43384 DATE 05/26/2020	CHECKED BTN	ENK	www.bolton-menk.com

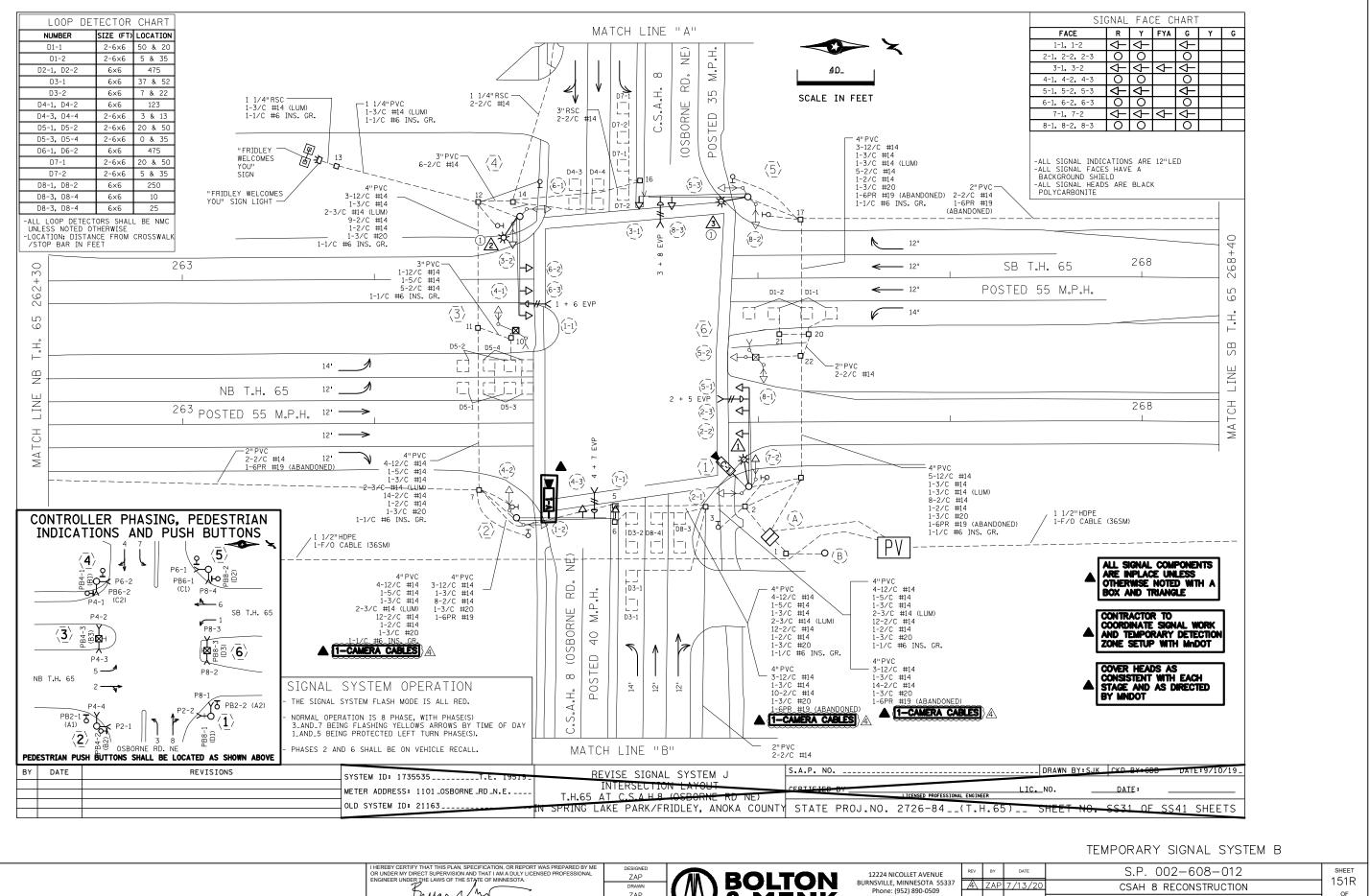

AutoCAD PDF (General Documentation).pc3 2:34 PM BMI Trans.ctb

> zacharypa 5/22/2020

S.B. STA. 443+10, 32.2'LT. PAIDO POLE FOUNDATION TYPE PAIDO-A-55-D40-9 (DAVIT AT 350 DEG) **1-X6-350/CAM 400 EXTENSION (MOUNTED AT 350 DEG, INCLUDES LIGHTNING ROD) 7/16" GROWND BRAID & GROWND ROD) 1-VIDEO CAMERA WITH MOUNT** 3-ONE WAY SIGNAL MOURTED AT 0', 17', 29' ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) ONE WAY SIGNAL MOUNTED AT 255 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 255 DEG A S.B. STA. 442+74, 59 L ζį $\langle \bar{1} \rangle$ S.B. STA. 444+45. 51.6' LT. EQUIPMENT PAD SERVICE CABINET PAIDO POLE FOUNDATION TYPE PAIDO-A-50-D40-9 (DAVIT AT 350 DEG) CONTROLLER AND CAB 2-ONE WAY SIGNALS OVERHEAD AT O'AND 11' ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) CONTROLLER CABINET 1-C. D. PED HEAD MOUNTED AT 45 DEG 1-C. D. PED HEAD MOUNTED AT 225 DEG 4" RSC 6-12/C #12 1-C.D. PED HEAD MOUNTED AT 225 DEG 1-ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT (PHASES 3+8) LUMINAIRE 250W HPS 1-RIO-X12 SIGN (36" X 48") ADJACENT TO HEAD (8-3) 1-INTERNALLY LIT TYPE D SIGN EXTEND INTO HH 4: 3" RSC 2-12/C #10 2-12/C #10 (CAMERA FACING WE TRAFFIC) 6-12/C #12 5-3/C #12 15-2/C #14 2-3/C #20 1-CAT 5E (COM CABLE 1-C. D. PED HEAD MOUNTED AT 225 DEG 1-ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT (PHASES 1+6) I-ONE WAY EVP DELECTOR AND CONFI LUMINAIRE 250W HPS I-RG-IL SIGN (ONE WAY) (48" X 18") I-RG-1R SIGN (ONE WAY) (48" X 18") I-INTERNALLY LIT TYPE D SIGN 1-6PR #19 (ABANDONE 1-VIDEO DETECTOR (V-1) ON MAST ARM (CAMERA FACING WB TRAFFIC) WITH & CAMERA EXTENSION ASSEMBLY CONTROLLER CABINET SED: 2-12/C #12 4" RSC 6-12/C #12 3-3/C #12 1-2/C #14 EXTEND INTO HH 1: 1-CAMERA CABLES 6-3/C #12 3[#] RSC 1-3/C #20 15-2/C #14 2-1/C #10 3-12/C #12 2-3/C #20 2-3/C #12 1-3/C #20 CONTROLLER CABIINET N.B. STA. 444+79, 29.3'LT. PEDESTAL FOUNDATION 15'PEDESTAL POLE PLUS BASE ONE WAY SIGNAL MOUNTED AT 270 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 90 DEG 1-C. D. PED HEAD MOUNTED AT 270 DEG 1-APS PED AND SIGN (DLB ARROW) (PB8-3) EXTEND INTO HH 7; <u>(3</u>) 2" RSC 1-6PR #19 1-7/16" GROUND BRAID TO GROUND ROD 1-COM CABLE (CAT 5E) COMTROLLER CABINET 1-1.5" NMC (IN SPARE 1-PRE-TERMINATED AR $\langle \overline{6} \rangle$ N.B. STA. 443+49, 52.5' LT. PEDESTAL FOUNDATION 1-3" RSC STUBBED OU 3/4" RSC STUBBED O PEDESTAL POUNDATION 15'PEDESTAL POLE PLUS BASE ONE WAY SIGNAL MOUNTED AT 270 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 90 DEG 1-C. D. PED HEAD MOUNTED AT 270 DEG 2" RSC 1-12/C #12 1-3/C #12 CONTROLLER CABINET 2" RSC 2-1/C #6 1-1/C #6 INS.GR. EXTEND INTO HH 14: 2" RSC 1-12/C #12 $\langle \overline{4} \rangle$ N.B. STA. 445+20, 32.2' RT. PAIOO POLE FOUNDATION (W/1" PVC STUB OUT & 5/8 " X 15' GR. ROD) TYPE PAIOO-A-55-D4O-9 (DAVIT AT 350 DEG) 3-ONE WAY SIGNALS OVERHEAD AT 0', 17', 29' ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) ONE WAY SIGNAL MOUNTED AT 252 DEG (RC DESIGN) 1-C D. PED HEAD MOUNTED AT 252 DEG (RC DESIGN) 1-C D. PED HEAD MOUNTED AT 252 DEG 1-3/C #12 1-2/C #14 SERVICE CABINET TO 2" RSC 3-1/C #2 SERVICE CABINET TO <u>(5)</u> N.B. STA. 443+73, 49.5' RT. PA100 POLE FOUNDATION 2" RSC 8-1/C #10 2-3/C #12 1-C. D. PED HEAD MOUNTED AT 225 DEG 1-ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT (PHASES 2+5) **TYPE PA100-A-50** 17PE PAIOU-A-50 2-ONE WAY SIGNALS OVERHEAD AT O'AND 11' ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 45 DEG 1-C. D. PED HEAD MOUNTED AT 255 DEG 1-ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT (PHASES 4+7) 1-RIO-X12 SIGN (36" X 48") ADJACENT TO HEAD (4-3) 1-THTERMALLY 1T TYPE D SIGN LUMINAIRE 250W HPS 1-R6-1L SIGN (ONE WAY) (48" X 18") 1-R6-1R SIGN (ONE WAY) (48" X 18") 1-INTERNALLY LIT TYPE D SIGN EXTEND INTO HH 8: 3" RSC 1-INTERNALLY LIT TYPE D SIGN EXTEND INTO HH 11: 2-1/C #10 3" RSC 2-1/C #10 3-12/C #12 2-3/C #12 1-VIDEO DETECTOR (V-2) ON MAST ARM (CAMERA FACING EB TRAFFIC) 2-12/C #12 1-3/C #20 3-3/C #12 WITH 6' CAMERA EXTENSION ASSEMBLY 1-CAMERA CABLES (B1) SOP (WOOD POLE WITH 1-2/C #14 1-3/C #20 2" RSC RISER, WEATH 3-1/C #2 B2 SOP (WOOD POLE AND 2" RSC RISER, WEATHE PED PB STATION PED PB STATION PED PB STATION PED PB STATION 3-1/C#2 OVERHEAD T 1-APS PB AND SIGN (LT ARROW) (PB4-1) 1-APS PB AND SIGN (LT ARROW) (PB6-1) 1-APS PB AND SIGN (LT ARROW) (PB8-1) 1-APS PB AND SIGN (RT ARROW) (PB4-2) EXTEND INTO HH 1: 1 1/4" PVC EXTEND INTO HH 4 EXTEND INTO HH 8 EXTEND INTO HH 11: 1 1/4" PVC 1 1/4" PVC 1-2/C #14 1-2/C #14 1-2/C #14 1-2/C #14 Metro T2061 ALL SIGNAL COMPONENTS ARE INPLACE UNLESS OTHERWISE NOTED WITH A PED PB STATION PED PB STATION ICT *: NAME: & FILE PED PB STATION PED PB STATION 1-APS PB AND SIGN (RT ARROW) (PB6-2) 1-APS PB AND SIGN (RT ARROW) (PB8-2) 1-APS PB AND SIGN 1-APS PB AND SIGN (RT ARROW) (PB2-2) (LT ARROW) (PB2-1) EXTEND INTO HH 1: 1 1/4" PVC EXTEND INTO HH 4: 1 1/4" PVC EXTEND INTO HH 8: EXTEND INTO HH 11: BOX AND TRIANGLE DISTRI IPLOT PATH 1 1/4" PVC 1 1/4" PVC 1-2/C #14 1-2/C #14 1-2/C #14 1-2/C #14 BY DATE REVISIONS S.A.P. NO. INTERSECTION NOTES SYSTEM ID: 1735322 T.E. 2665 J3T 01-16-19 REMOVED ERRORS T.H. 47 (UNIVERSITY AVE.) AT CERTIFIED BY METER ADDRESS: 7556 UNIVERSITY AVE, NE CSAH 8 (OSBORNE RD.) ICENSED PROFESSIO OLD ID: 20681 FRIDLEY, ANOKA COUNTY STATE PROJ.NO. HEREBY CERTIFY THAT THIS PLAN. SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DUI Y LICENSED PROFESSIONA 12224 NICOLLET AVENUE 7AP BOLTON NGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA. BURNSVILLE, MINNESOTA 55337 DRAWN Phone: (952) 890-0509 Dryan N ZAP & M NK Email: Burnsville@bolton-menk.co BRYAN T. NEMETH CHECKE H: \AKC0\T43118096\CAD\C3D\plans\Signal\118096_sql004 - 5.dwg www.bolton-menk.com 4338 05/26/2020 BTN IC NO


ура 2020

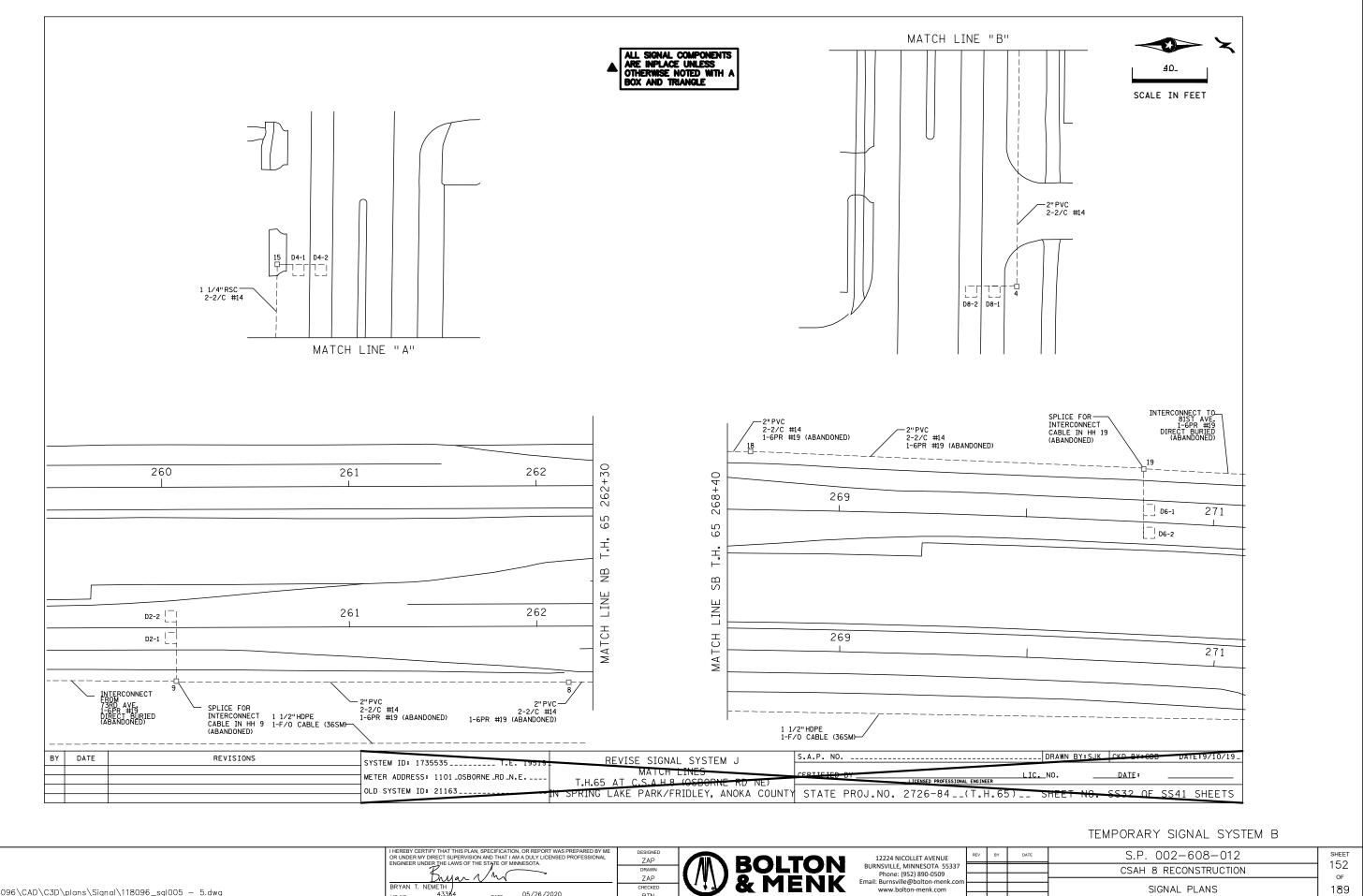
		-
	ר	
л.		
DINET		
TO HH1:		
E) (D)		
TO HH 15:		
T TO HH 107:		
•		
TO PULL VAULT: 3")		
RMORED FO PIGTAIL (12SM)		
UT (THREADED AND CAPPED BOTH ENDS) UT (FOR TELEPHONE LINE)		
TO SERVICE CABINET:		
SOP VIA HH 16:		~
		T.
HH 15:		i Inner
· · ·		
OVERHEAD CABLE TO TRANSFORMERAT B2 BY XCEL ENERGY)		
ERHEAD AND CONDUIT INTO HH 16:		
		••
TRANSFORMER BY XCEL ENERGY)		
ERHEAD AND CONDUIT INTO HH 16; D TRANSFORMER (BY XCEL ENERGY)		
U TRANSFORMER (BY XCEL ENERGY)		
DRAWN BY: CKD BY: DATE:		
LIC. NO DATE:		
(T.H.47) SHEET NO. 3 OF 5 SHEETS		
TEMPORARY SIGNAL SYSTEM .	A I	
v BY DATE S.P. 002-608-012		SHEET 148R
ZAP 7/13/20 CSAH 8 RECONSTRUCTION		OF
SIGNAL PLANS		189


tation).pc3 s.ctb Doc eral C Trans (Gene BMI PDF AutoCAD 2:34 PM

.ypq 2020

AutoCAD PDF (General Documentation).pc3 2:34 PM BMI Trans.ctb

> zacharypa 5/22/2020



SIGNAL PLANS

189

	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL		
	ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	ZAF	
	R I.	DRAWN	
	Dryar VM	ZAP	- VIV & MENK Burnsville@bolton-menk.com www.bolton-menk.com
	BRYAN T. NEMETH	CHECKED	
:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl005 - 5.dwg	LIC. NO. 43384 DATE 05/26/2020	BTN	Www.boiton-menk.com

7/13/

	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MO DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DESIGNED ZAP DRAWN ZAP	TON	12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com
:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl005 — 5.dwg	BRYAN T. NEMETH J LIC. NO43384DATE05/26/2020	CHECKED BTN	ENK	www.bolton-menk.com

entation).pc3 (General Docume BMI Trans.ctb PDF AutoCAD F 2:29 PM

zacharypa 5/22/2020

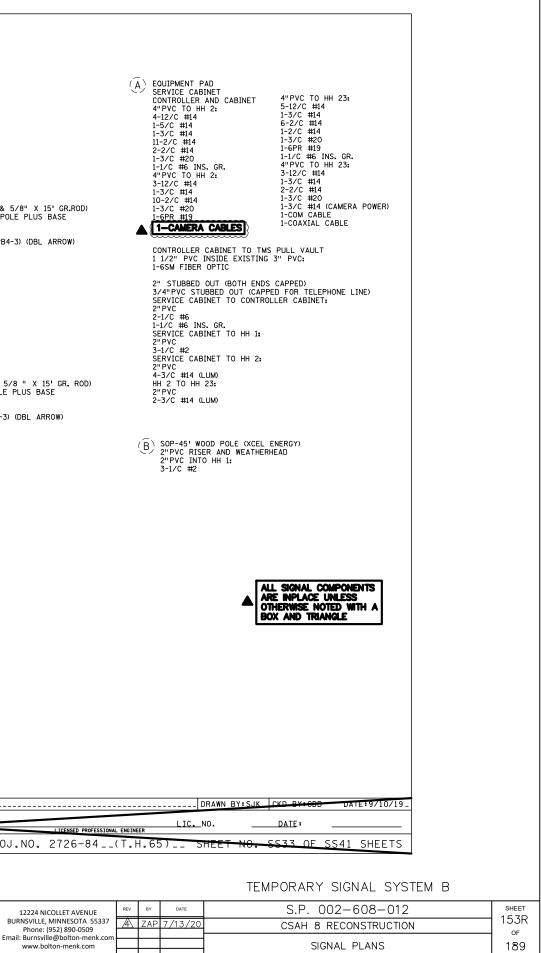
2-C. D. PED INDS MOUNTED AT 45 & 225 DEG ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT PHASES (2+5) LUMINAIRE-LED 1-R6-IR SIGN (ONE WAY)	2-ONE WAY SIGNALS MOUNTED AT 45 & 225 DEG 2-C. D. PED INDS MOUNTED AT 45 & 225 DEG ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT PHASES (4+7)	73 PEDESTAL FOUNDATION
I-R6-1L SIGN (ONE WAY) I-TYPE D SIGN (D-2) I-TYPE D SIGN (D-1) EXTEND INTO HH 23: 3"PVC 3-12/C #14 I-3/C #14 (LUM) 2-2/C #14 I-3/C #20 21-7/16" GROUNDING BRAID TO GROUND ROD IN HH 23: I-3/C #14 (CAMERA POWER) I-COM CABLE I-COAXIAL CABLE	1-R10-12 SIGN (36 X 48) ADJACENT TO HEAD (4-4) 1-TYPE D SIGN (0-3) EXTEND INTO HH 7: 3"PVC 3-12/C #14 1-3/C #14 1-3/C #20 2-1/C #6 INS. GR. 1-VIDEO DETECTOR (V-1) ON MAST ARM (CAMERA FACING EB TRAFFIC) WITH 6' CAMERA EXTENSION ASSEMBLY 1-CAMERA CABLES	→ PEDESTAL FOUNDATION (W/I" PVC STUB OUT & 5/8" X 15' GR.ROD) 13' SIGNAL PEDESTAL POLE PLUS BASE ONE WAY SIGNAL 2-C. D. PED INDS 1-APS PB AND SIGN (PB4-3) (DBL ARROW) EXTEND INTO HH 10: 3"PVC 1-12/C #14 1-5/C #14 1-2/C #14 2-1/C #6 INS. GR.
AIOO POLE FOUNDATION (W/1" PVC STUB OUT & 5/8 " X 15' GR. ROD) TYPE PAIOO-A-50-D30-9 (DAVIT AT 10 DEG) 3-ONE WAY SIGNALS OVERHEAD (0', 11' AND 23' FROM END OF MAST ARM) 1-ONE WAY SIGNAL POLE MOUNTED AT 45 DEG (3-2) 2-ONE WAY SIGNALS MOUNTED AT 45 & 225 DEG 2-C, D, PED INDS MOUNTED AT 45 & 225 DEG 0NE WAY EVP DETECTOR AND CONFIRMATORY LIGHT PHASES (1+6) LUMINAIRE-LED 1-R6-1R SIGN (ONE WAY) 1-TYPE D SIGN (0-E WAY) 1-TYPE D SIGN (0-4) EXTEND INTO HH 12: 3"PVC	<pre> A100 POLE FOUNDATION (W/1" PVC STUB OUT & 5/8 " X 15' GR. ROD) TYPE PAIOO-A-55-D4O-9 (DAVIT AT 350 DEG) 2-ONE WAY SIGNALS OVERHEAD (0' AND 11' FROM END OF MAST ARM) 1-ONE WAY SIGNAL MOUNTED ON A 5' EXTENSION AT O' (3-1) 1-RIO-X12 SIGN ADJACENT TO SIGNAL HEAD (3-1) 2-ONE WAY SIGNALS MOUNTED AT 45 & 225 DEG 2-C. D. PED INDS MOUNTED AT 45 & 225 DEG ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT PHASES (3+8) LUMINAIRE-LED 1-RIO-12 SIGN (36 X 48) ADJACENT TO HEAD (8-4) 1-TYPE D SIGN (H-6) EXTEND INTO HH 17: 3"PVC 3-12/C #14 1-3/C #14 </pre>	Yedestal foundation (W/1" PVC STUB OUT & 5/8 " X 15' GR. ROC 13' SIGNAL PEDESTAL POLE PLUS BASE 2-ONE WAY SIGNALS 2-C. D. PED INDS 1-APS PB AND SIGN (PB8-3) (DBL ARROW) EXTEND INTO HH 22: 3"PVC 2-12/C #14 1-2/C #14 2-1/C #6 INS. GR.
1-3/C #14 1-3/C #14 1-3/C #20 2-1/C #6 INS. GR. APS PED PB STA (PB2-1) APS PED PB STA (PB2-1) APS PED PB STA (PB2-1) 1-APS PB AND SIGN (LT ARROW) 1" PVC TO HH 7: 1"-2/C #14 1-2/C #14 APS PED PB STA (PB2-2)	T ARROW) 1-APS PB AND SIGN (LT ARROW) 1-APS PB AND SIGN (LT ARROW) 1" PVC TO HH 17: 1" PVC TO HH 2: 1-2/C #14 1-2/C #14	

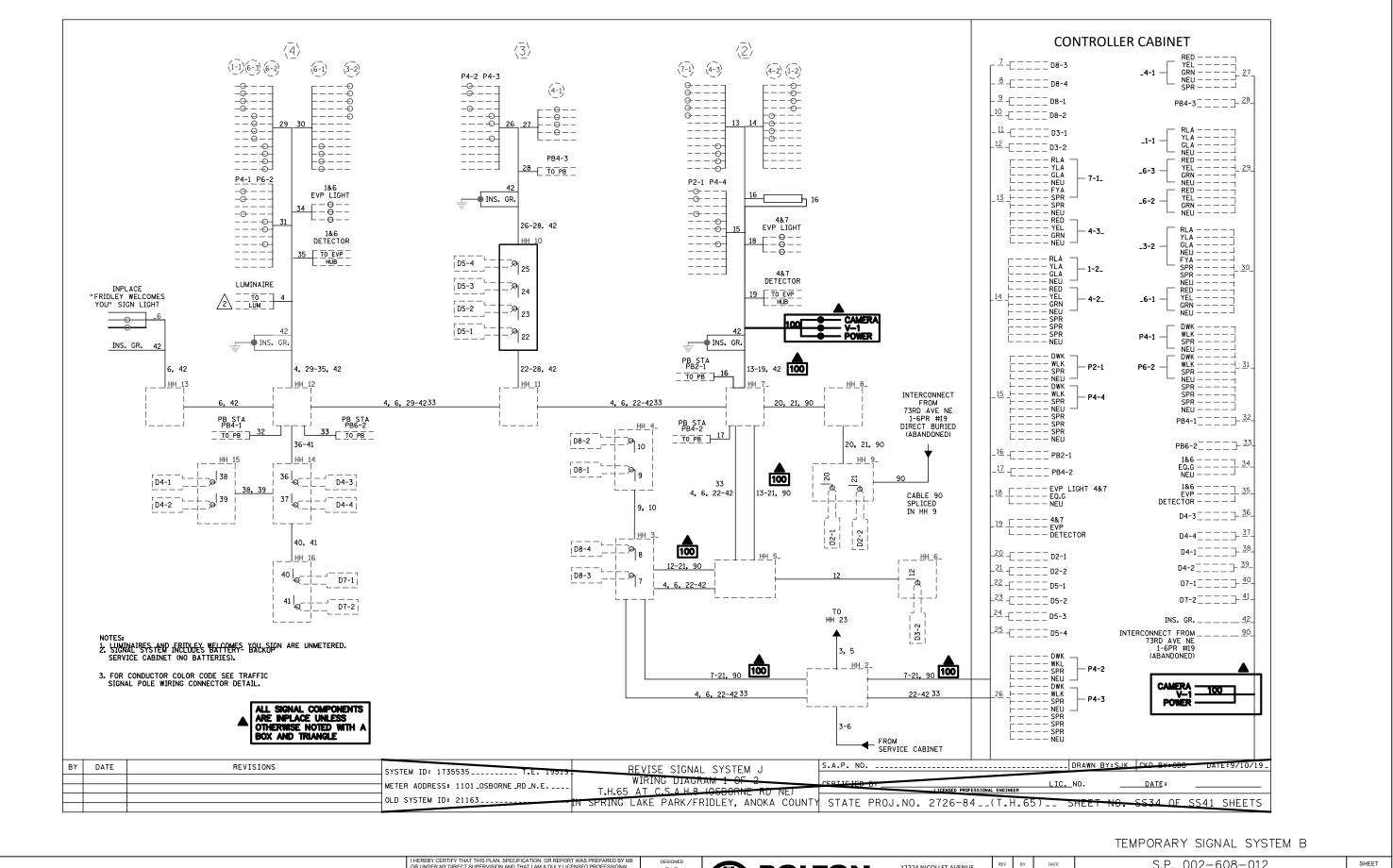
DATE .

05/26/2020

BRYAN T. NEMETH

LIC. NO.

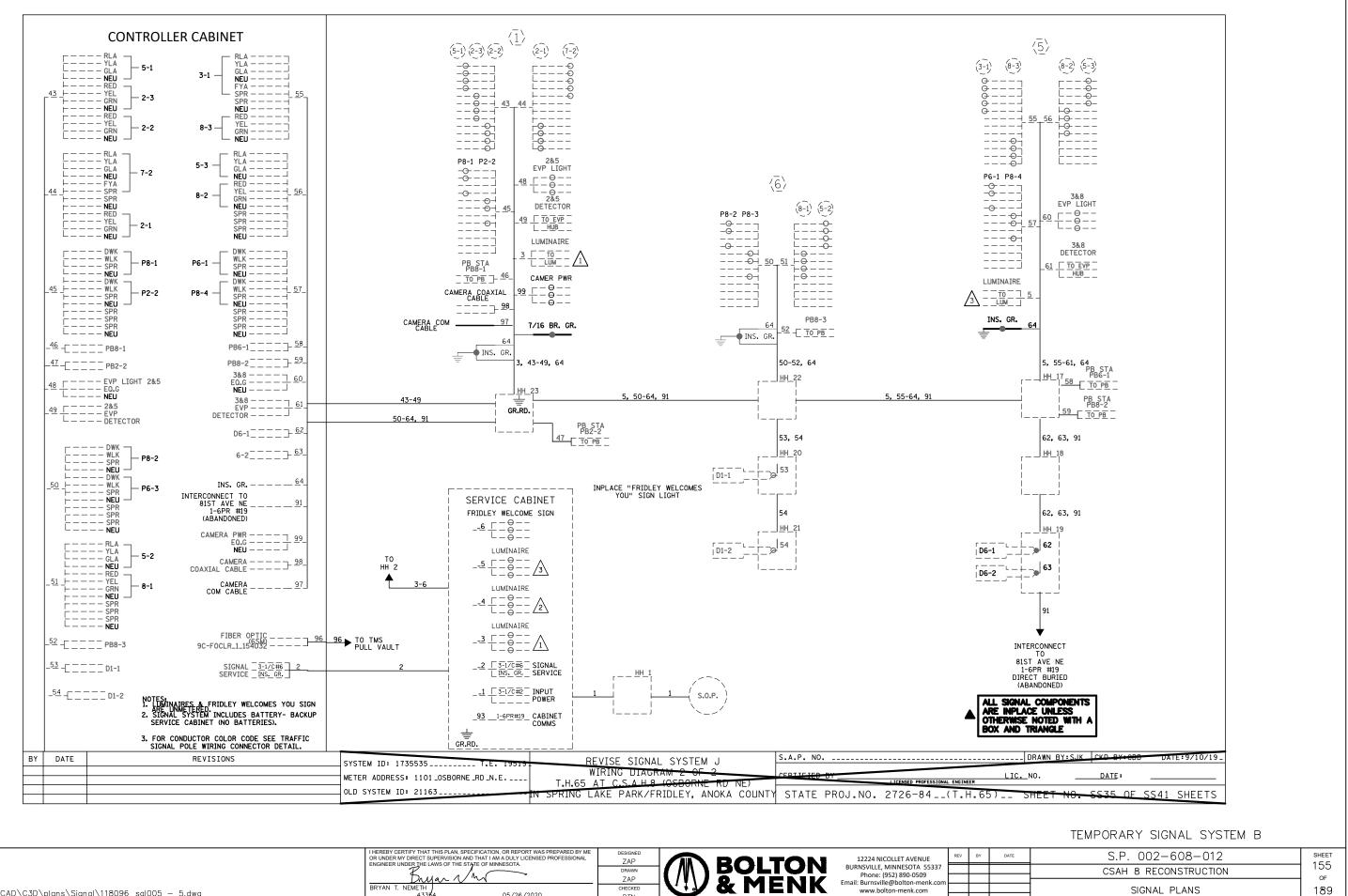

CHECKED BTN


BMI Irans.ctb
.42 PM

rypa /2020

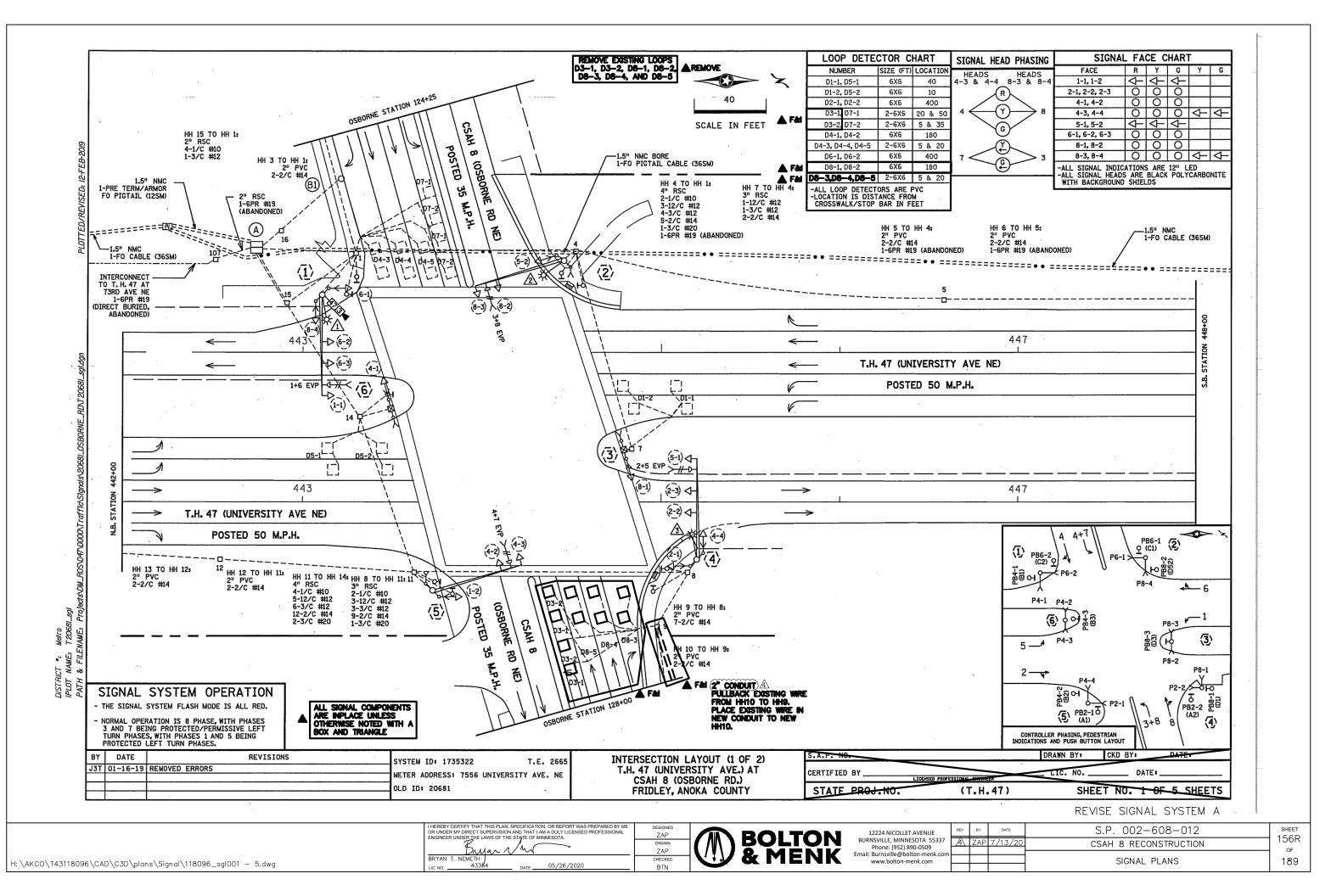
zachar 7/13/

H:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl005 - 5.dwg

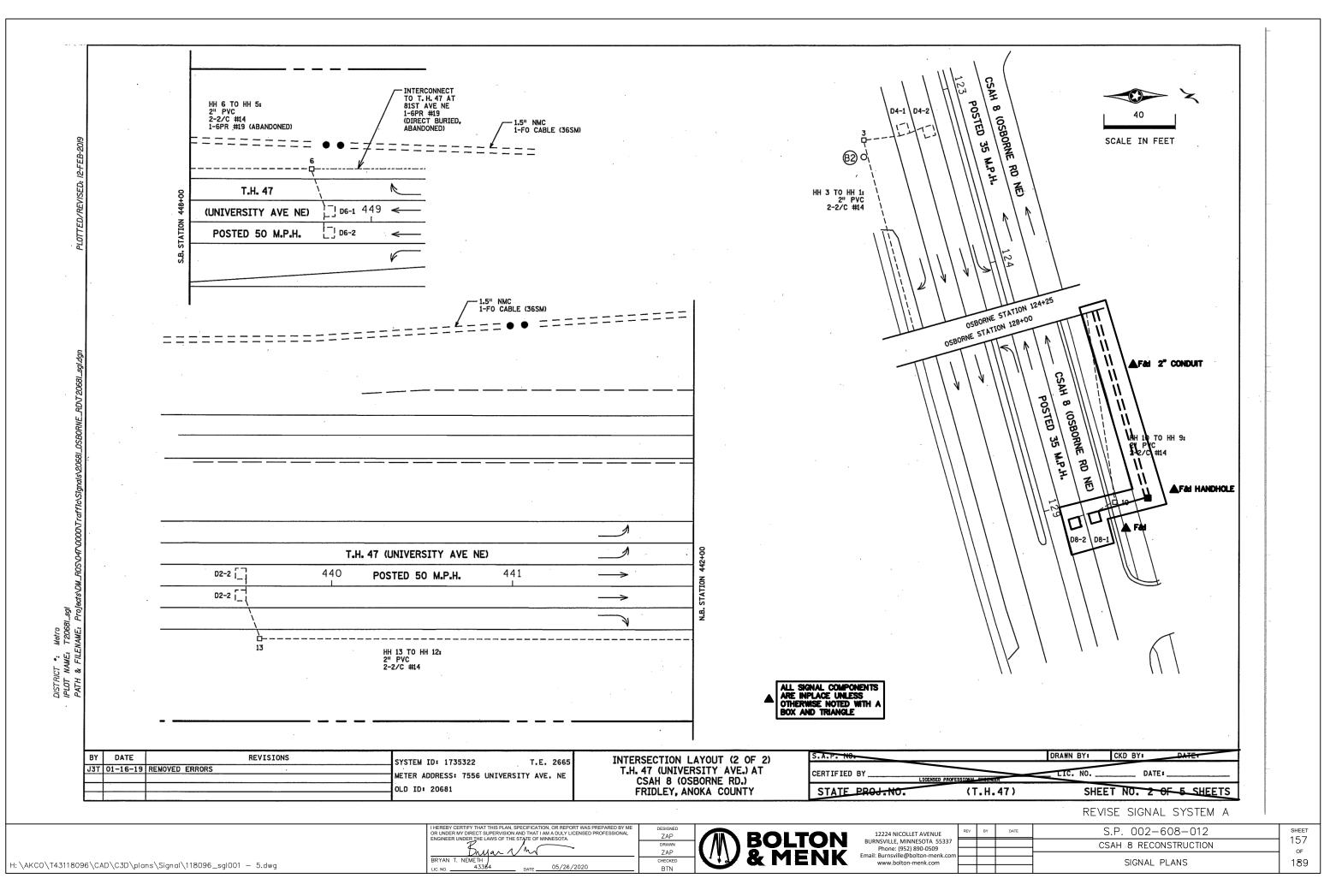


	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL		DOLTON	12224 NICOLLET AVENUE	R
	ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DRAWN 7AP	BOLTON	BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509	_
AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl005 — 5.dwg	BRYAN T. NEMETH LIC. NO. 43384 DATE 05/26/2020	CHECKED	& MENK	Email: Burnsville@bolton-menk.com www.bolton-menk.com	_

AutoCAD PDF (General Documentation).pc3 2:29 PM BMI Trans.ctb


> zacharypa 5/22/2020

EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	154 of
			SIGNAL PLANS	189
				100



	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME	DESIGNED	
	OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	ZAP	
	ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DRAWN	BOLTON 12224 NICOLIET AVENUE BURNSVILLE, MINNESOTA 55337 Phone: (952) 880-0509
	Dryan MM	ZAP	
	BRYAN T. NEMETH	CHECKED	WINDER SOLUTION CONTRACT CONTR
+:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl005 — 5.dwg	LIC. NO. 43384 DATE 05/26/2020	BTN	

CAD AutoC 2:29 zacharypa 5/22/2020

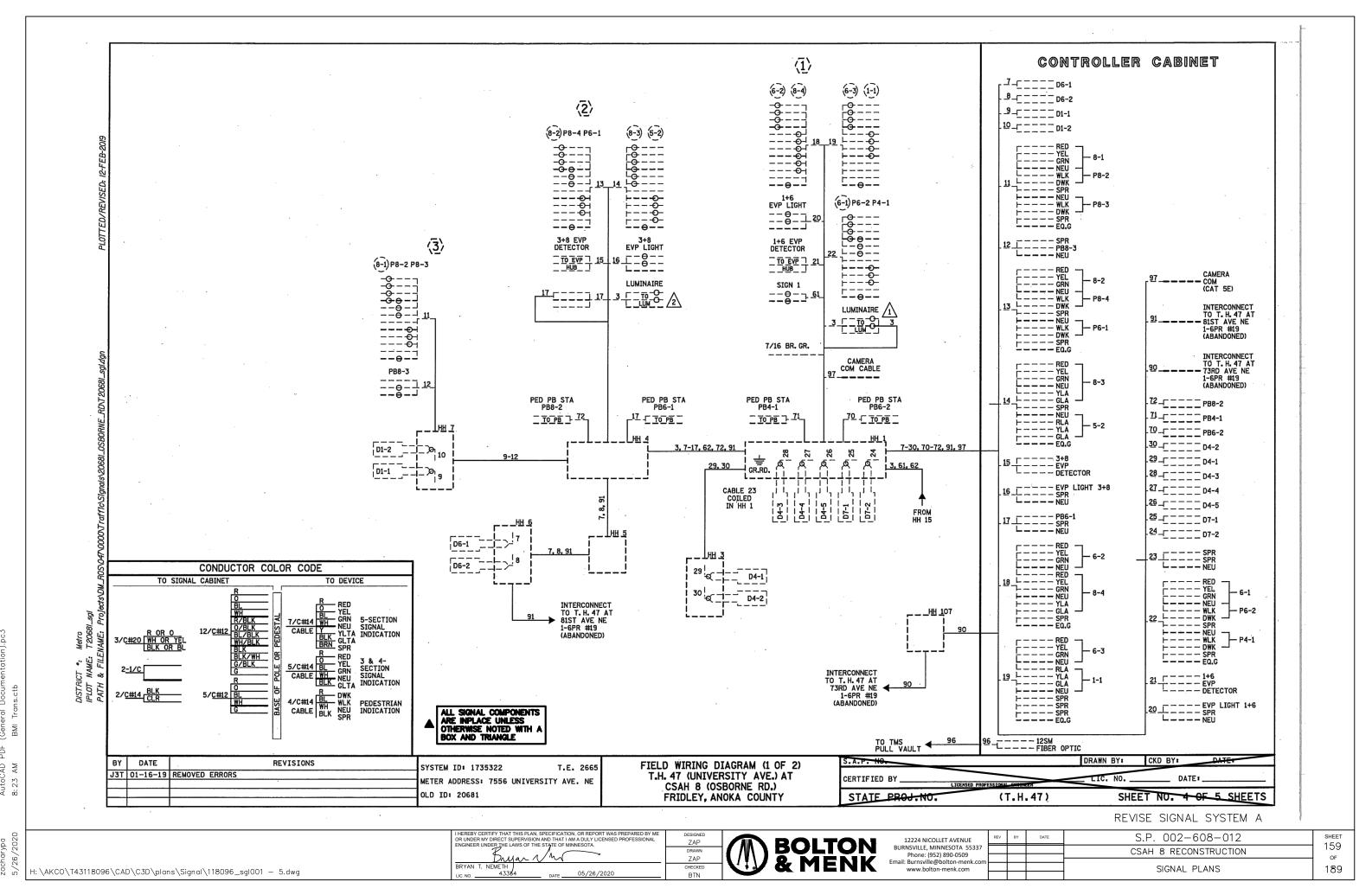
icharypa /13/2020

AutoCAD PDF (General Documentation).pc3 8:23 AM BMI Trans.ctb

> zacharypa 5/26/2020

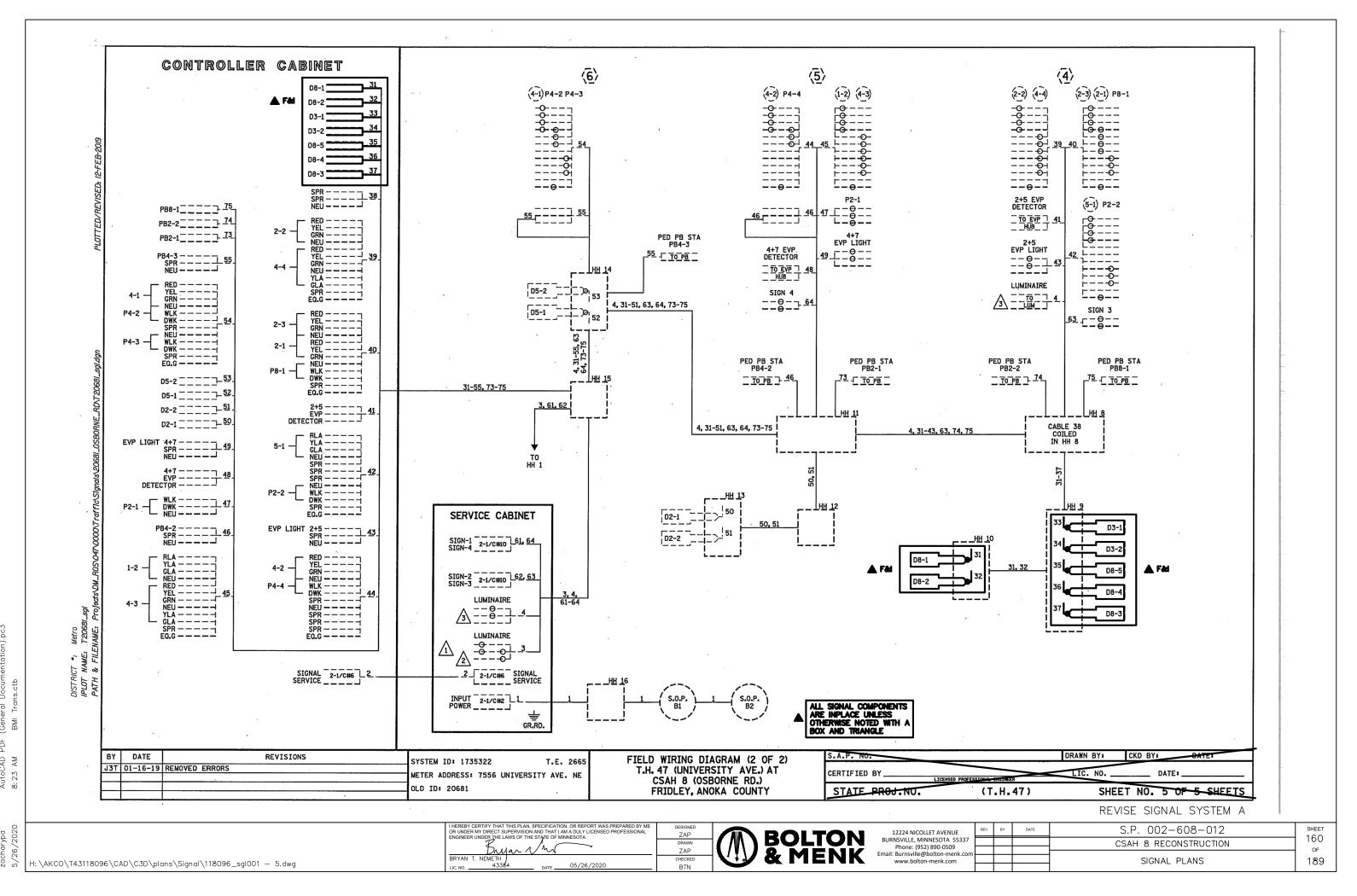
S.B. STA. 443+10, 32.2'LT. PAIDO POLE FOUNDATION TYPE PAIDO-A-55-D40-9 (DAVIT AT 350 DEG) **1-X6-350/CAM 400 EXTENSION (MOUNTED AT 350 DEG, INCLUDES LIGHTNING ROD) 7/16" GROWND BRAID & GROWND ROD) 1-VIDEO CAMERA WITH MOUNT** 3-ONE WAY SIGNAL MOURTED AT 0', 17', 29' ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) ONE WAY SIGNAL MOUNTED AT 255 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 255 DEG ζį $\langle \bar{1} \rangle$ A S.B. STA. 442+74, 59 LT. EQUIPMENT PAD SERVICE CABINET S.B. STA. 444+45. 51.6' LT. PAIDO POLE FOUNDATION TYPE PAIDO-A-50-D40-9 (DAVIT AT 350 DEG) CONTROLLER AND CABINET 2-ONE WAY SIGNALS OVERHEAD AT O'AND 11' ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) CONTROLLER CABINET TO HH1: 1-C. D. PED HEAD MOUNTED AT 45 DEG 1-C. D. PED HEAD MOUNTED AT 225 DEG 4" RSC 6-12/C #12 I-ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT (PHASES 3+8) LUMINAIRE 250W HPS I-RIO-XI2 SIGN (36" X 48") ADJACENT TO HEAD (8-3) I-RID-XI2 SIGN (36" X 48") ADJACENT TO HEAD (8-3) 5-3/C #12 15-2/C #14 2-3/C #20 1-CAT 5E (COM CABLE) 1-C. D. PED HEAD MOUNTED AT 25 DEG 1-ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT (PHASES 1+6) EXTEND INTO HH 4: 3" RSC 2-1/C #10 2-12/C #12 I-ONE WAY EVP DETECTOR AND CONFI LUMINAIRE 250W HPS I-RG-IL SIGN (ONE WAY) (48" X 18") I-RG-1R SIGN (ONE WAY) (48" X 18") I-INTERNALLY LIT TYPE D SIGN 1-6PR #19 (ABANDONED) CONTROLLER CABINET TO HH 15: SED. 4" RSC 6-12/C #12 3-3/C #12 1-2/C #14 EXTEND INTO HH 1: 6-3/C #12 3" RSC 1-3/C #20 15-2/C #14 2-1/C #10 3-12/C #12 2-3/C #20 2-3/C #12 1-3/C #20 CONTROLLER CABIINET TO HH 107: <u><</u>3> N.B. STA. 444+79, 29.3'LT. PEDESTAL FOUNDATION 2" RSC 1-6PR #19 1-7/16" GROUND BRAID TO GROUND ROD 1-COM CABLE (CAT 5E) PEDESTAL POLE PLUS BASE ONE WAY SIGNAL MOUNTED AT 270 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 90 DEG 1-C. D. PED HEAD MOUNTED AT 270 DEG 1-APS PB AND SIGN (DLB ARROW) (PB8-3) EXTEND INTO HH 7: COMTROLLER CABINET TO PULL VAULT: $\langle \overline{6} \rangle$ N.B. STA. 443+49, 52.5' LT. PEDESTAL FOUNDATION IS'PEDESTAL POLE PLUS BASE ONE WAY SIGNAL MOUNTED AT 270 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 90 DEG 2" RSC 1-12/C #12 1-3/C #12 CONTROLLER CABINET TO SERVICE CABINET: 1-C. D. PED HEAD MOUNTED AT 270 DEG 2" RSC 2-1/C #6 1-1/C #6 INS. GR. EXTEND INTO HH 14: 2" RSC 1-12/C #12 $\langle \bar{4} \rangle$ N.B. STA. 445+20, 32.2' RT. PA100 POLE FOUNDATION 1-3/C #12 1-2/C #14 SERVICE CABINET TO SOP VIA HH 16: 2" RSC 3-1/C #2 W/I" PVC STUB OUT & 5/8 " X 15' GR. ROD) TYPE PA100-A-55-D40-9 (DAVIT AT 350 DEG) 3-ONE WAY SIGNALS OVERHEAD AT 0', 17', 29' ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 45 DEG SERVICE CABINET TO HH 15: $\langle \overline{5} \rangle$ N.B. STA. 443+73, 49.5' RT. PA100 POLE FOUNDATION 2" RSC 8-1/C #10 2-3/C #12 1-C. D. PED HEAD MOUNTED AT 225 DEG 1-ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT (PHASES 2+5) **TYPE PA100-A-50** 17PE PAIOU-A-50 2-ONE WAY SIGNALS OVERHEAD AT O'AND 11' ONE WAY SIGNAL MOUNTED AT 45 DEG (RC DESIGN) 1-C. D. PED HEAD MOUNTED AT 45 DEG 1-C. D. PED HEAD MOUNTED AT 255 DEG 1-ONE WAY EVP DETECTOR AND CONFIRMATORY LIGHT (PHASES 4+7) 1-RIO-X12 SIGN (36" X 48") ADJACENT TO HEAD (4-3) 1-THTERMALLY 1T TYPE D SIGN LUMINAIRE 250W HPS L-RG-IL SIGN (ONE WAY) (48" X 18") 1-RG-IR SIGN (ONE WAY) (48" X 18") 1-INTERNALLY LIT TYPE D SIGN EXTEND INTO HH 8: 3" RSC 1-INTERNALLY LIT TYPE D SIGN EXTEND INTO HH 11: 2-1/C #10 3" RSC 2-1/C #10 3-12/C #12 2-3/C #12 2-12/C #12 3-3/C #12 1-3/C #20 1-2/C #14 1-3/C #20 3-1/C #2 (SOP (WOOD POLE AND TRANSFORMER BY XCEL ENERGY) PED PB STATION PED PB STATION PED PB STATION PED PB STATION 1-APS PB AND SIGN (LT ARROW) (PB4-1) 1-APS PB AND SIGN (LT ARROW) (PB6-1) 1-APS PB AND SIGN (LT ARROW) (PB8-1) 1-APS PB AND SIGN (RT ARROW) (PB4-2) EXTEND INTO HH 1: 1 1/4" PVC EXTEND INTO HH 4 EXTEND INTO HH 8 EXTEND INTO HH 11: 1 1/4" PVC 1 1/4" PVC 1-2/C #14 1-2/C #14 1-2/C #14 1-2/C #14 Metro T2061 PED PB STATION ICT *: NAME: & FILE PED PB STATION PED PB STATION PED PB STATION 1-APS PB AND SIGN (RT ARROW) (PB6-2) 1-APS PB AND SIGN (RT ARROW) (PB8-2) 1-APS PB AND SIGN 1-APS PB AND SIGN (RT ARROW) (PB2-2) (LT_ARROW) (PB2-1) EXTEND INTO HH 1: 1 1/4" PVC EXTEND INTO HH 4: 1 1/4" PVC EXTEND INTO HH 8: EXTEND INTO HH 11: DISTRI IPLOT PATH 1 1/4" PVC 1 1/4" PVC 1-2/C #14 1-2/C #14 1-2/C #14 1-2/C #14 ALL SIGNAL COMPONENTS ARE INPLACE UNLESS OTHERWISE NOTED WITH A BOX AND TRIANGLE DATE REVISIONS S.A.P. NO. BY INTERSECTION NOTES SYSTEM ID: 1735322 T.E. 2665 J3T 01-16-19 REMOVED ERRORS T.H. 47 (UNIVERSITY AVE.) AT CERTIFIED BY METER ADDRESS: 7556 UNIVERSITY AVE, NE CSAH 8 (OSBORNE RD.) ICENSED PROFESSION OLD ID: 20681 FRIDLEY, ANOKA COUNTY STATE PROJ.NO. HEREBY CERTIFY THAT THIS PLAN. SPECIFICATION, OR REPORT WAS PREPARED BY M OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DUI Y LICENSED PROFESSIONA 12224 NICOLLET AVENUE 7AP BOLTON NGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA BURNSVILLE, MINNESOTA 55337 DRAWN Phone: (952) 890-0509 ZAP & M Dryan N Email: Burnsville@bolton-menk.co BRYAN T. NEMETH CHECKE H:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl001 - 5.dwg www.bolton-menk.com 4338 05/26/2020 BTN IC NO

tation). ctb ă Trai (Gene BMI CAD AutoC 8: 23

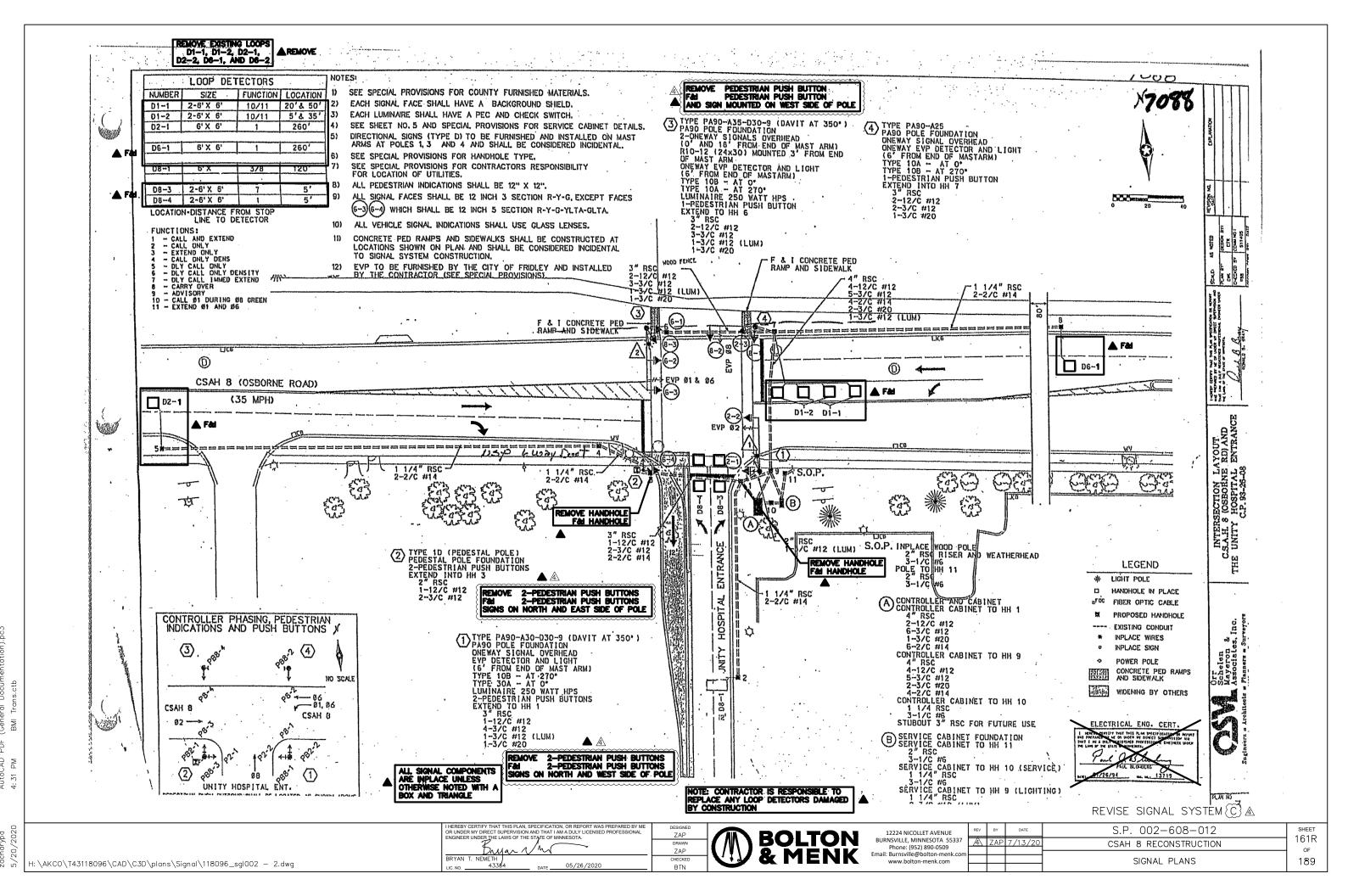

ура 2020

1-1.5" NMC (IN SPARE 3") 1-PRE-TERMINATED ARMORED FO PIGTAIL (12SM) 1-3" RSC STUBBED OUT (THREADED AND CAPPED BOTH ENDS) 3/4" RSC STUBBED OUT (FOR TELEPHONE LINE)

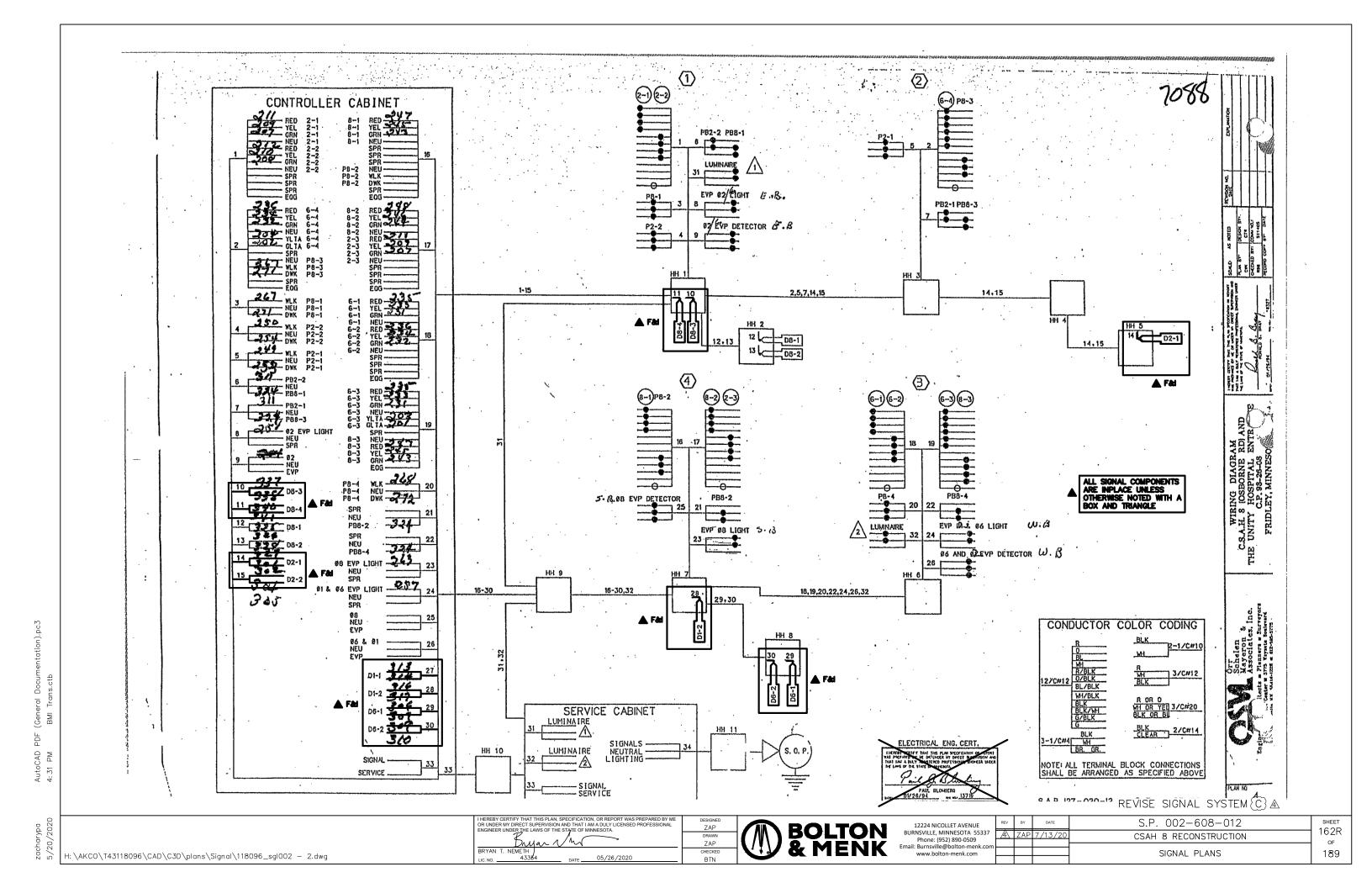
(B1) SOP (WOOD POLE WITH OVERHEAD CABLE TO TRANSFORMERAT B2 BY XCEL ENERGY) 2" RSC RISER, WEATHERHEAD AND CONDUIT INTO HH 16:

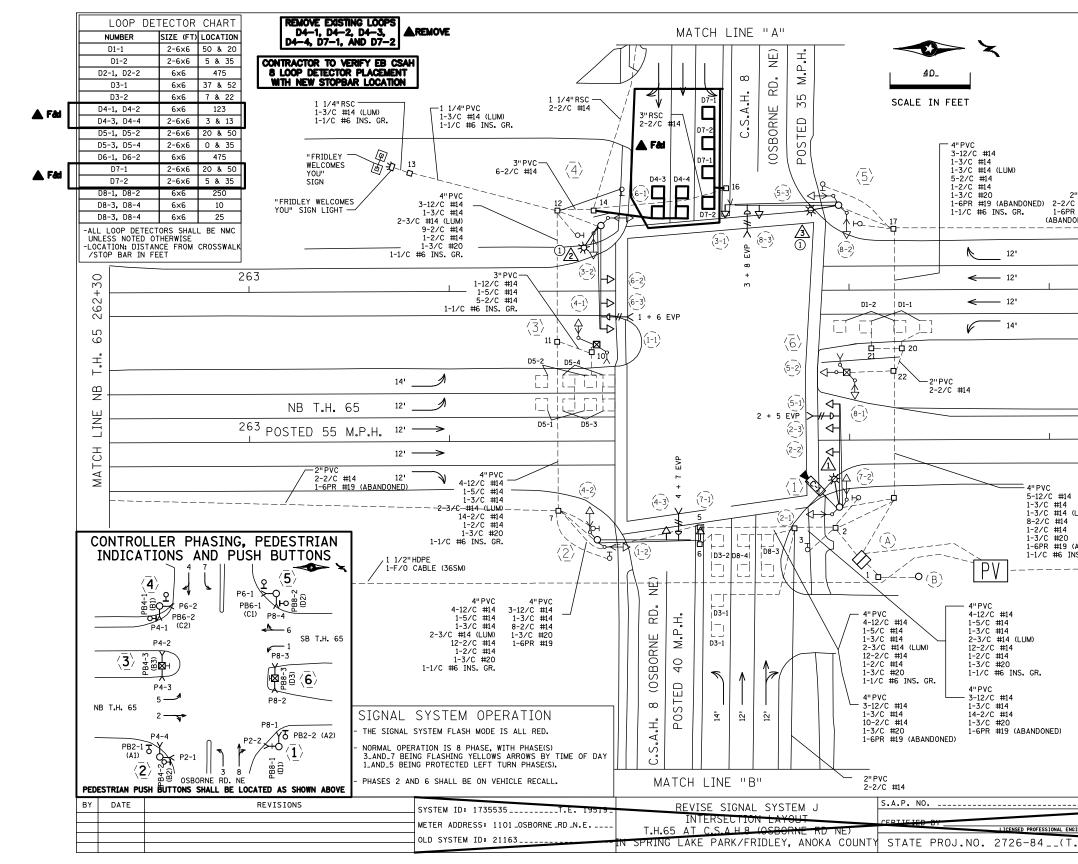

2" RSC RISER, WEATHERHEAD AND CONDUIT INTO HH 16: 3-1/C#2 OVERHEAD TO TRANSFORMER (BY XCEL ENERGY)

			DRAWN BY: CKD BY: DATE:	
AL	SHO IN	ER	LIC. NO DATE:	
T	.н.	47)	SHEET NO. 3 OF 5 SHEETS	
			REVISE SIGNAL SYSTEM A	
v	BY	DATE	S.P. 002-608-012	SHEET
_			CSAH 8 RECONSTRUCTION	158 ₀_
			SIGNAL PLANS	189


tation).pc3 s.ctb ă eral E Tran (Gene BMI PDF AutoCAD 8:23 AM

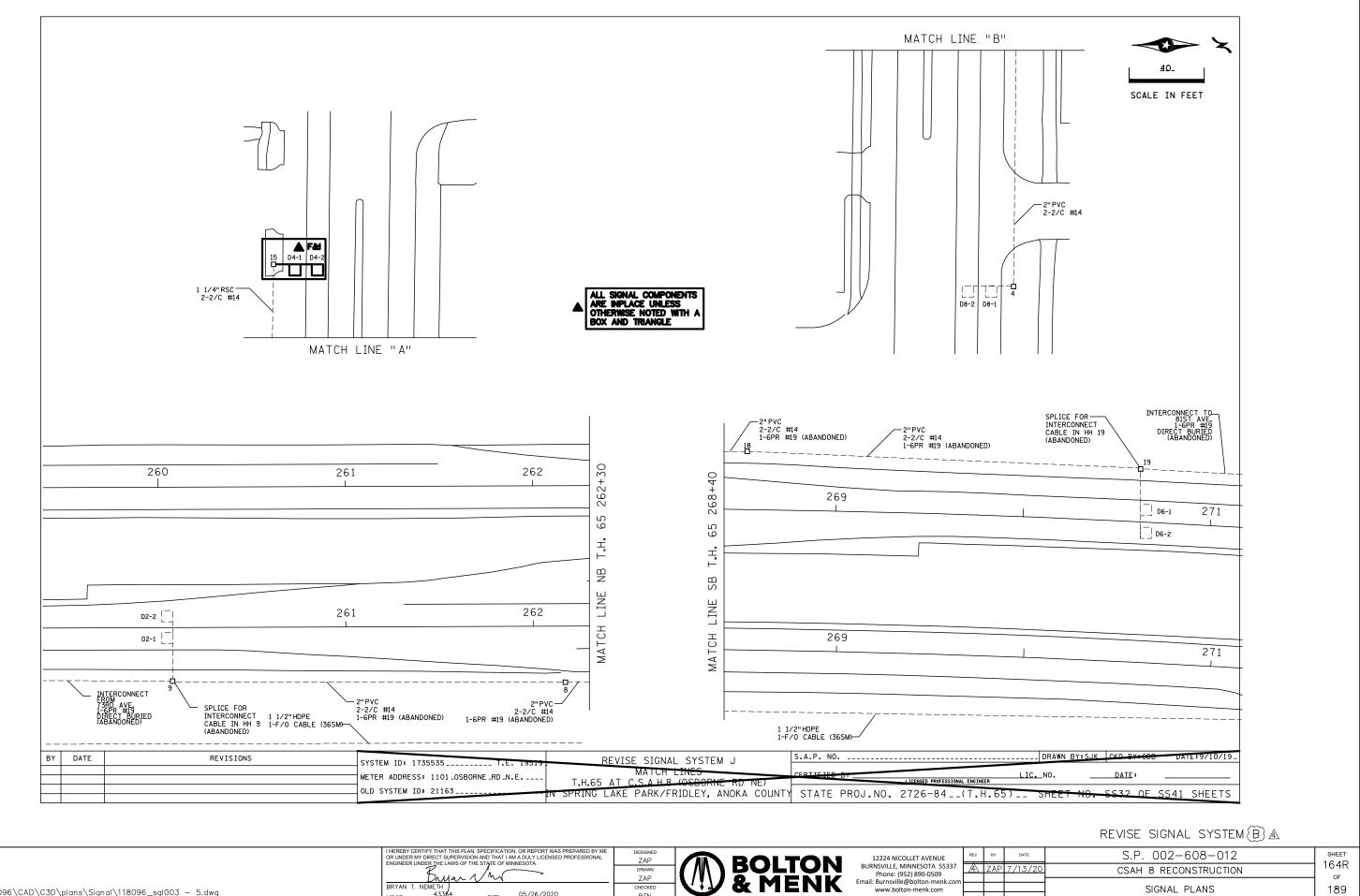
.ypq 2020




intation).pc3 s.ctb Doc Tra (Gene BMI PDF AutoCAD 8:23 AM

ура 2020

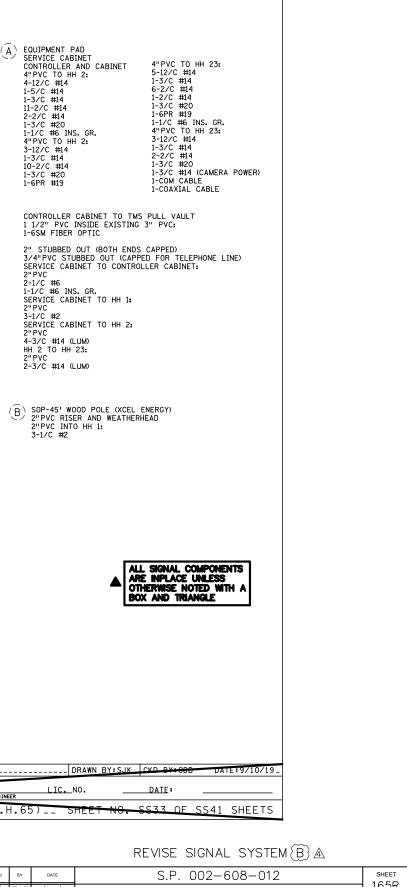
Tro (Gene BMI CAD PM Auto(4: 31



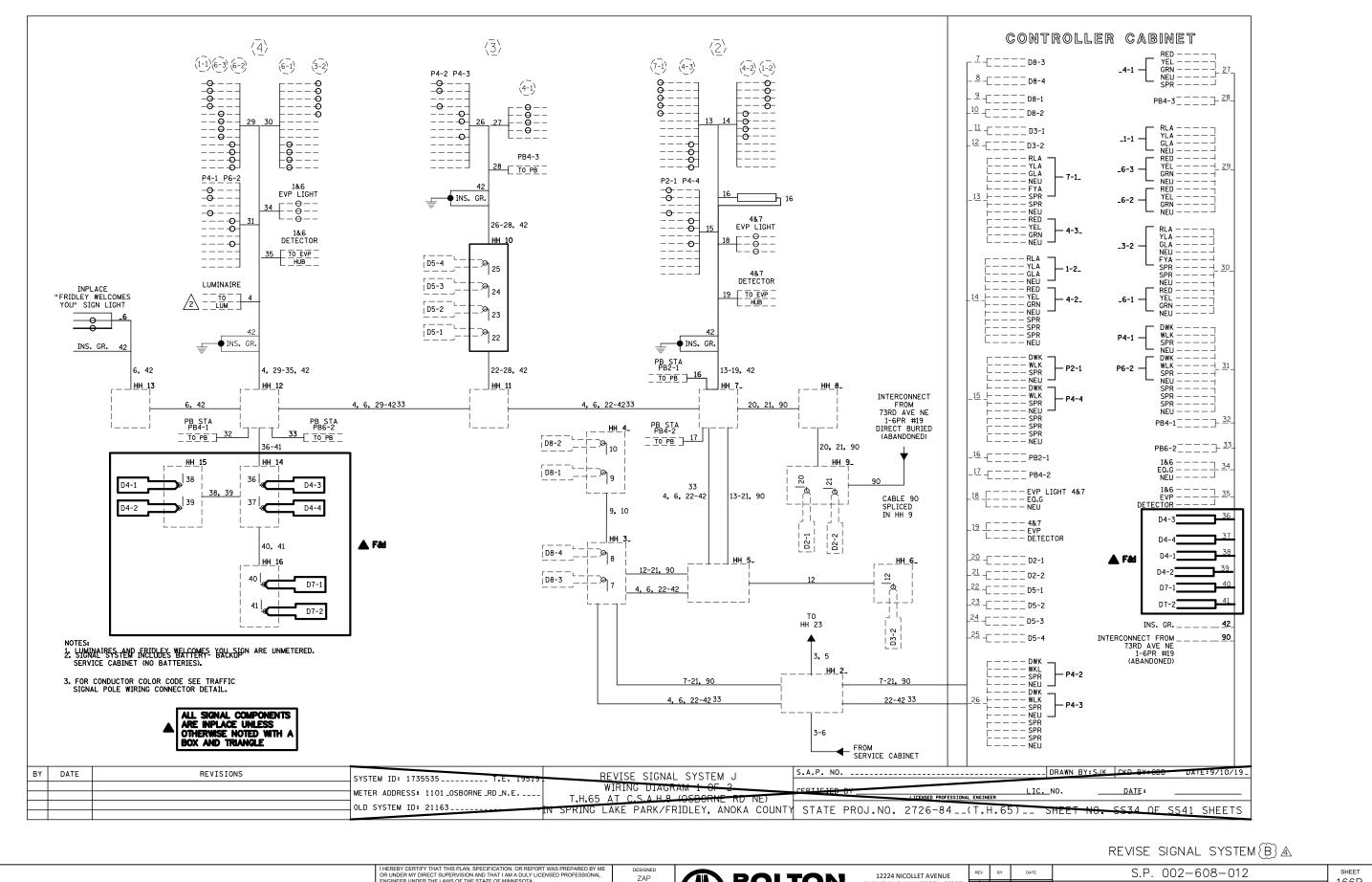
	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL		
	ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	ZAP	
	P	DRAWN	
	Dryan MM	ZAP	
		ZAF	L Email: Burnsville@bolton-menk.com
	BRYAN T. NEMETH	CHECKED	
H: \AKC0\T43118096\CAD\C3D\plans\Signal\118096_sgl003 - 5.dwg	43384 DATE 05/26/2020	BTN	
	Ele: No: BATE	Ulix	

cacharypa 7 /13/2020

					_	
		GNAL FACE CHA	_	_]	
	FACE 1-1, 1-2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	G	1	
	2-1, 2-2, 2-3]	
	3-1, 3-2		_		4	
	4-1, 4-2, 4-3 5-1, 5-2, 5-3		_		1	
	6-1, 6-2, 6-3					
	7-1, 7-2			-		
	8-1, 8-2, 8-3					
2"PVC-	-ALL SIGNAL IND -ALL SIGNAL FAC BACKGROUND SHI -ALL SIGNAL HEA POLYCARBONITE	CATIONS ARE 12"LED ES HAVE A ELD IS ARE BLACK				
C #14 R #19 DONED)					-	
				+40		
SE	T.H. 65	268		268+40		
PACTI						
FUSIE	ED 55 M.P.H.	_		65		
				Т.Н.		
				"		
				SB		
				Щ		
		268		MATCH LINE		
		I		AT0		
				ÌÌ		
				I		
1						
(LUM)						
	, 1 1/2"HDPE					
(ABANDONED	1-F/O CABLE	(36SM)				
		. SIGNAL COMPONEN E INPLACE UNLESS	TS			
	▲ õi	E INFLACE ONLESS HERWISE NOTED WITH K AND TRIANGLE	• •			
		ANU IRIANGLE				
				0./10		
	DRAWN BY:SJK		TE:9/1	U/19_	{	
NGINEER	<u>LIC.</u> NO.	DATE:			-	
[.H.65)	SHEET NO.	<u>SS31 OF SS41</u>	SHEI	ETS		
		REVISE SIGNA	L SY	STE	M (B) A	
REV BY	DATE	S.P. 002-				SHEET
	13/20	CSAH 8 RECC			N	163R
		SIGNAL				- o⊧ 189
		SIGNAL	////	-		



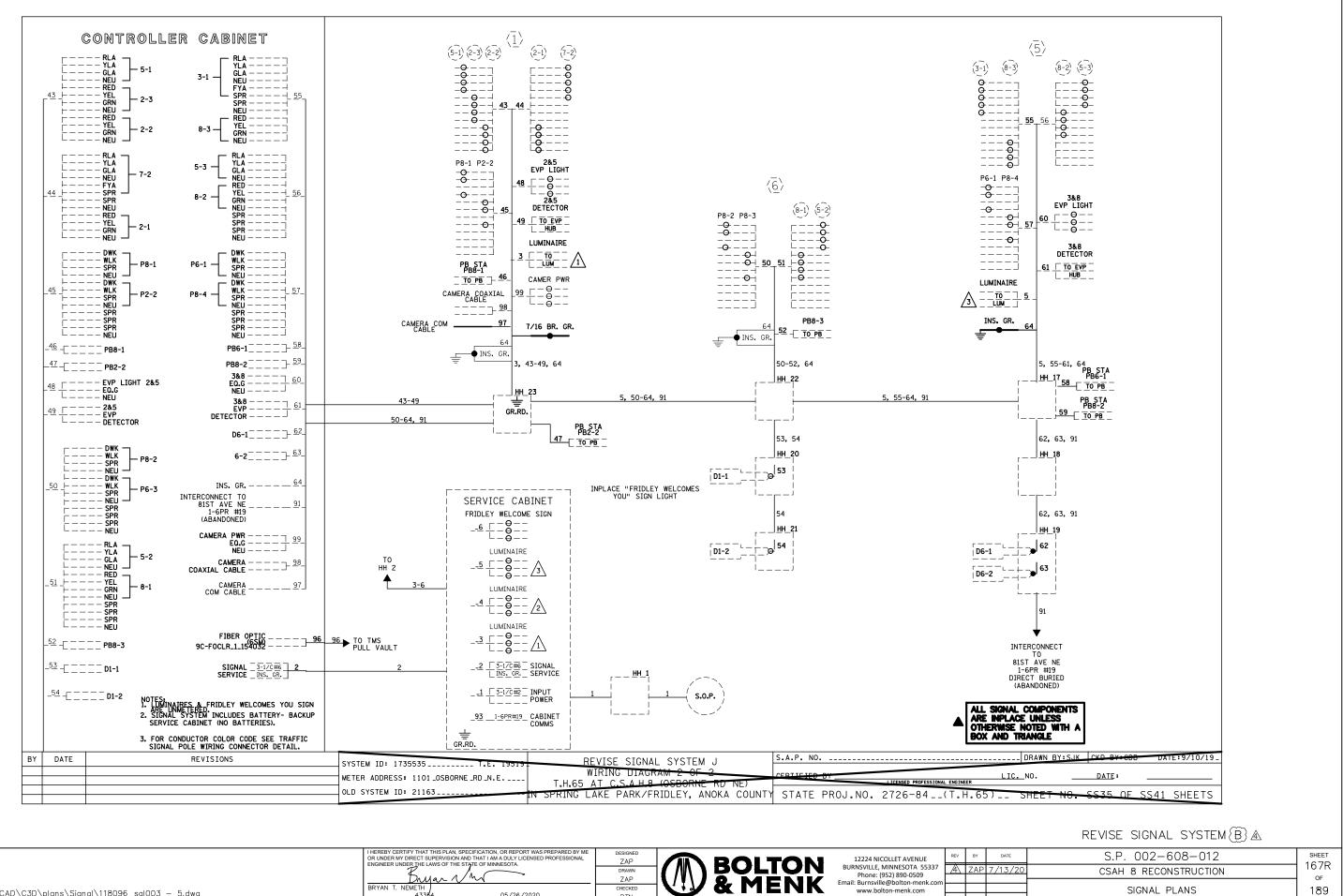
	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME	DESIGNED	
	OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	ZAP	AN BOLTON
	\overline{R}	DRAWN	BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509
	Dryar VM	ZAP	Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com
	BRYAN T. NEMETH	CHECKED	VIV& MENK Email: Burnsville@bolton-menk.com www.bolton-menk.com
l:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl003 - 5.dwg	LIC. NO. 43384 DATE 05/26/2020	BTN	


zacharypa 7/13/2020

	2-C. D. PED INDS 1-APS PB AND SIGN (PB4-3) (DBL ARROW) EXTEND INTO HH 10: 3"PVC 1-12/C #14 1-5/C #14			3-12/C #14 1-3/C #14 2-2/C #14 1-3/C #20 2-1/C #6 INS. GR.		EXTEND INTO HH 23: 3"PVC 3-12/C #14 1-3/C #14 1-3/C #14 (LUM) 2-2/C #14 (LUM)	
	1-2/C #14 2-1/C #6 INS. GR.				D TO GROUND ROD IN HH 23:)	1-3/C #20 21-7/16" GROUNDING BRAI 1-3/C #14 (CAMERA POWER 1-COM CABLE 1-COAXIAL CABLE	
(B)	PEDESTAL FOLINDATION (W/I" PVC STUB OUT & 5/8 " X 15' GR. ROD) 13' SIGNAL PEDESTAL POLE PLUS BASE 2-OR WAY SIGNALS 2-C. D. PED INDS 1-APS PB AND SIGN (PBB-3) (DBL ARROW) EXTEND INTO HH 22: 3"PVC 2-12/C #14 1-2/C #14 2-1/C #16 INS. GR.	(0)	AVIT AT 350 DEG) EAD MAST ARM) O ON A 5' EXTENSION AT O' (3-1) TO SIGNAL HEAD (3-1) ED AT 45 & 225 DEG AT 45 & 225 DEG ID SES (3+8)	 PA100 POLE FOUNDATION (W/I" PVC STUB OUT & 5/f TYPE PA100-A-55-D40-9 (DAV 2-ONE WAY SIGNALS OVERHEA (O' AND 11' FROM END OF M 1-ONE WAY SIGNAL MOUNTED 1-R10-X12 SIGN ADJACENT TO 2-ONE WAY SIGNAL MOUNTED 2-C. D. PED INDS MOUNTED 1-R10-12 SIGN (36 X 48) ADJ 1-TYPE D SIGN (0-6) EXTEND INTO HH 17: 3"PVC 3-12/C #14 1-3/C #14 1-3/C #14 1-3/C #14 1-3/C #14 1-3/C #20 1-1/C #6 INS. GR. 	: 5/8 " X 15' GR. ROD) (DAVIT AT 10 DEG) RHEAD ND OF MAST ARM) MOUNTED AT 45 DEG (3-2) NTED AT 45 & 225 DEG ED AT 45 & 225 DEG AND	A PA100 POLE FOUNDATION (W/1" PVC STUB OUT 8 TYPE PA100-A-50-D30-9 3-ONE WAY SIGNALS OVE (0', 11' AND 23' FROM 1 1-ONE WAY SIGNAL POLE 2-ONE WAY 1-TYPE D SIGN (D-4) 2-TYPE D SIGN (D-4) 2-TYPE D SIGN (D-4) 2-TYPE SIGNAL POLE 2-TYPE SIGNAL P	
			APS PED PB STA (PB8-1) 1-APS PB AND SIGN (LT ARROW) 1" PVC TO HH 2: 1-2/C #14 APS PED PB STA (PB8-2) 1-APS PB AND SIGN (RT ARROW) 1" PVC TO HH 17:	APS PED PB STA (PB6-1) 1-APS PB AND SIGN (LT ARROW) 1" PVC TO HH 17: 1-2/C #14 APS PED PB STA (PB6-2) 1-APS PB AND SIGN (LT ARROW) 1" PVC TO HH 12:	APS PED PB STA (PB4-1) 1-APS PB AND SIGN (LT ARROW) 1" PVC TO HH 12: 1-2/C #14 APS PED PB STA (PB4-2) 1-APS PB AND SIGN (RT ARROW) 1" PVC TO HH 7:	APS PED PB STA (PB2-1) 1-APS PB AND SIGN (LT ARROW) 1" PVC TO HH 7: 1-2/C #14 APS PED PB STA (PB2-2) 1-APS PB AND SIGN (RT ARROW) 1" PVC TO HH 2:	

rypa /2020 zachar 7 /13 / BRYAN T. NEMETH H:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl003 - 5.dwg LIC. NO.

V	BY	DATE	S.P. 002-608-012	SHEET
4	ZAP	7/13/20	CSAH 8 RECONSTRUCTION	165R
			SIGNAL PLANS	 189
				100



I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME DESIGNED		R
	12224 NICOLLET AVENUE	_
OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	BURNSVILLE, MINNESOTA 55337	Ŀ
Duran Mm ZAP VII O MI	Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com	
BRYAN T NEMETH	www.bolton-menk.com	7
AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl003 - 5.dwg		1

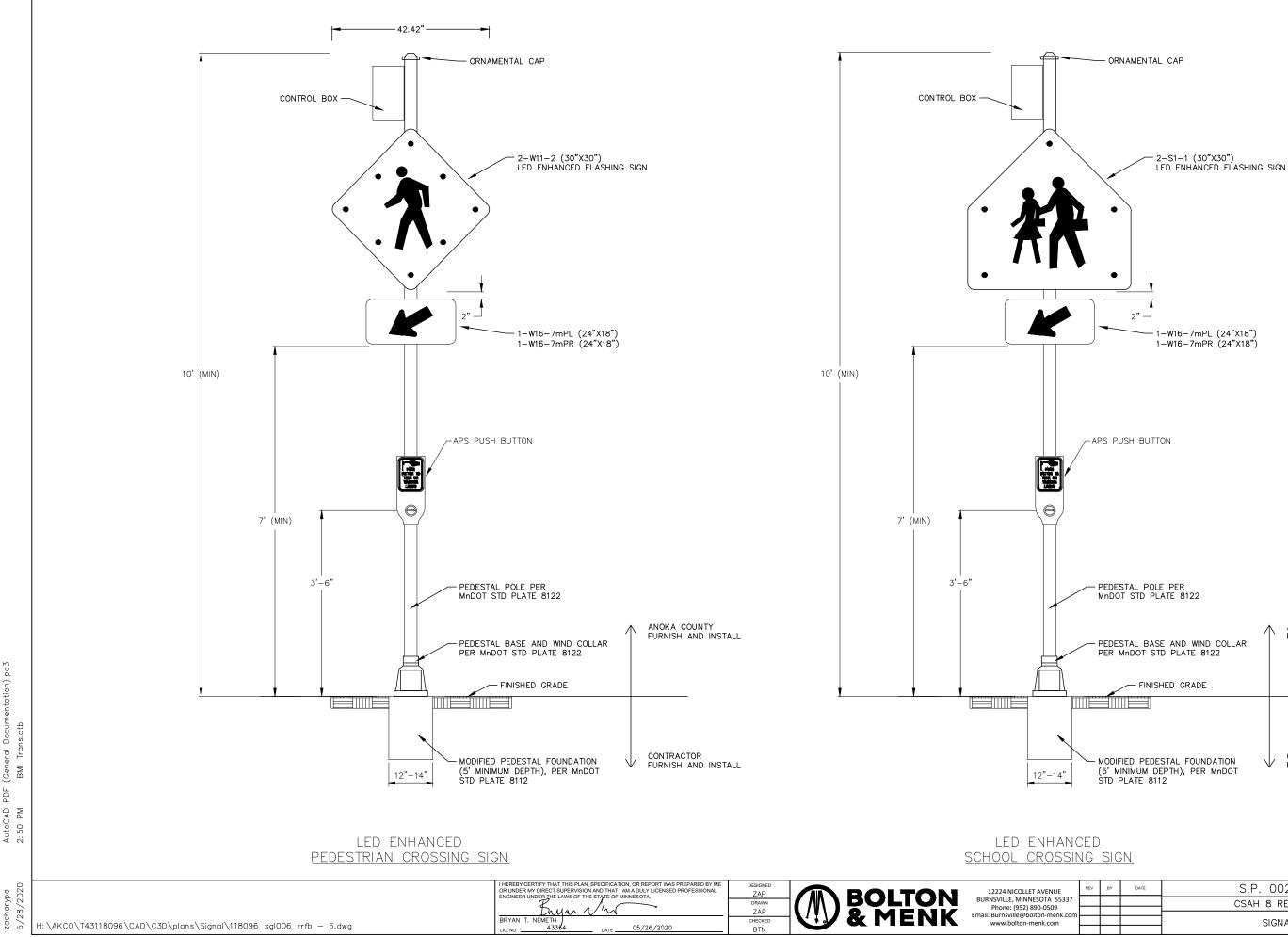
AutoCAD PDF (General Documentation).pc3 2:05 PM BMI Trans.ctb

> zacharypa 7/13/2020


EV	BY	DATE	S.P. 002-608-012	SHEET
4	ZAP	7/13/20	CSAH 8 RECONSTRUCTION	166R
				OF
_			SIGNAL PLANS	189

	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME	DESIGNED		RF
	OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	ZAP	DOITON 12224 NICOLLET AVENUE	
	ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DRAWN	BOLTON 12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 55337 Phone: 1951 89(-)559	174
	Dryan MM -	ZAP	Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com	i
	BRYAN T. NEMETH	CHECKED	-VIV& MENK	-
H:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl003 - 5.dwg	LIC. NO. 43384 DATE 05/26/2020	BTN		Ē

zacharypa 7/13/2020

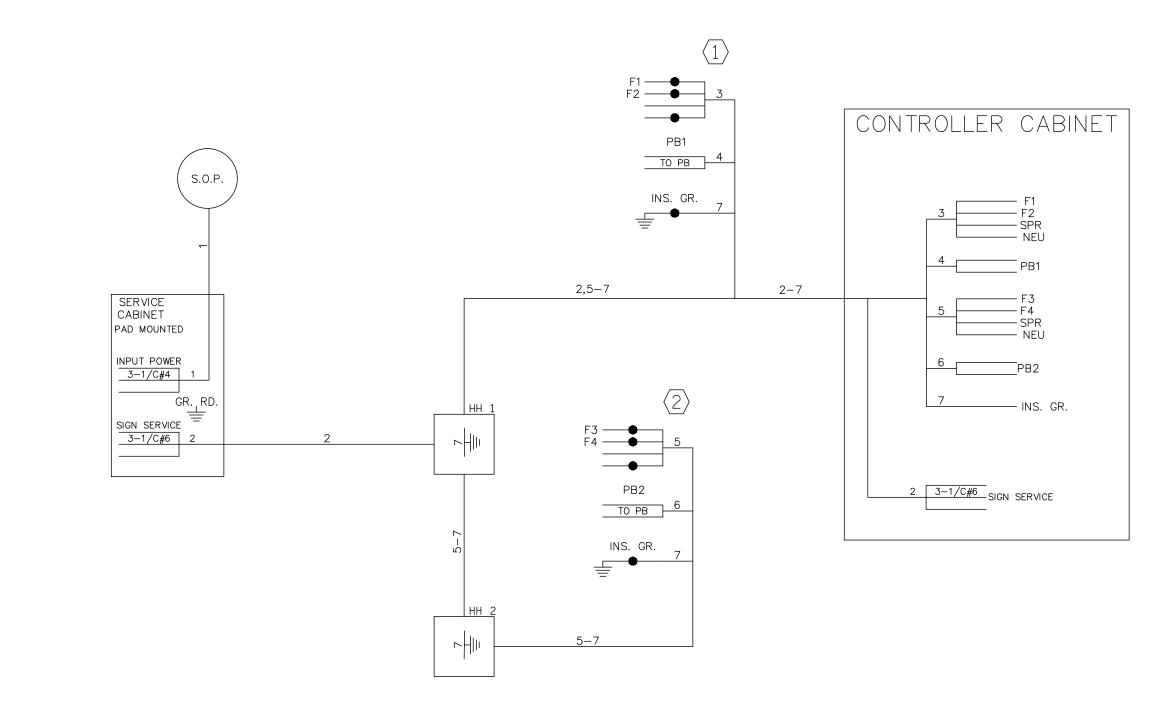

TYPICAL PAD WITH RURAL LIGHTING AND FLASHER CABINET SEE INTERSECTION LAYOUT FOR CABLE INFORMATION (NOT TO SCALE)

IC NO

CONTRACTOR SHALL VERIFY BOLT PATTERN WITH ANOKA COUNTY HIGHWAY DEPARTMENT PRIOR TO INSTALLATION

EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	168
				OF
			SIGNAL PLANS	189
				100

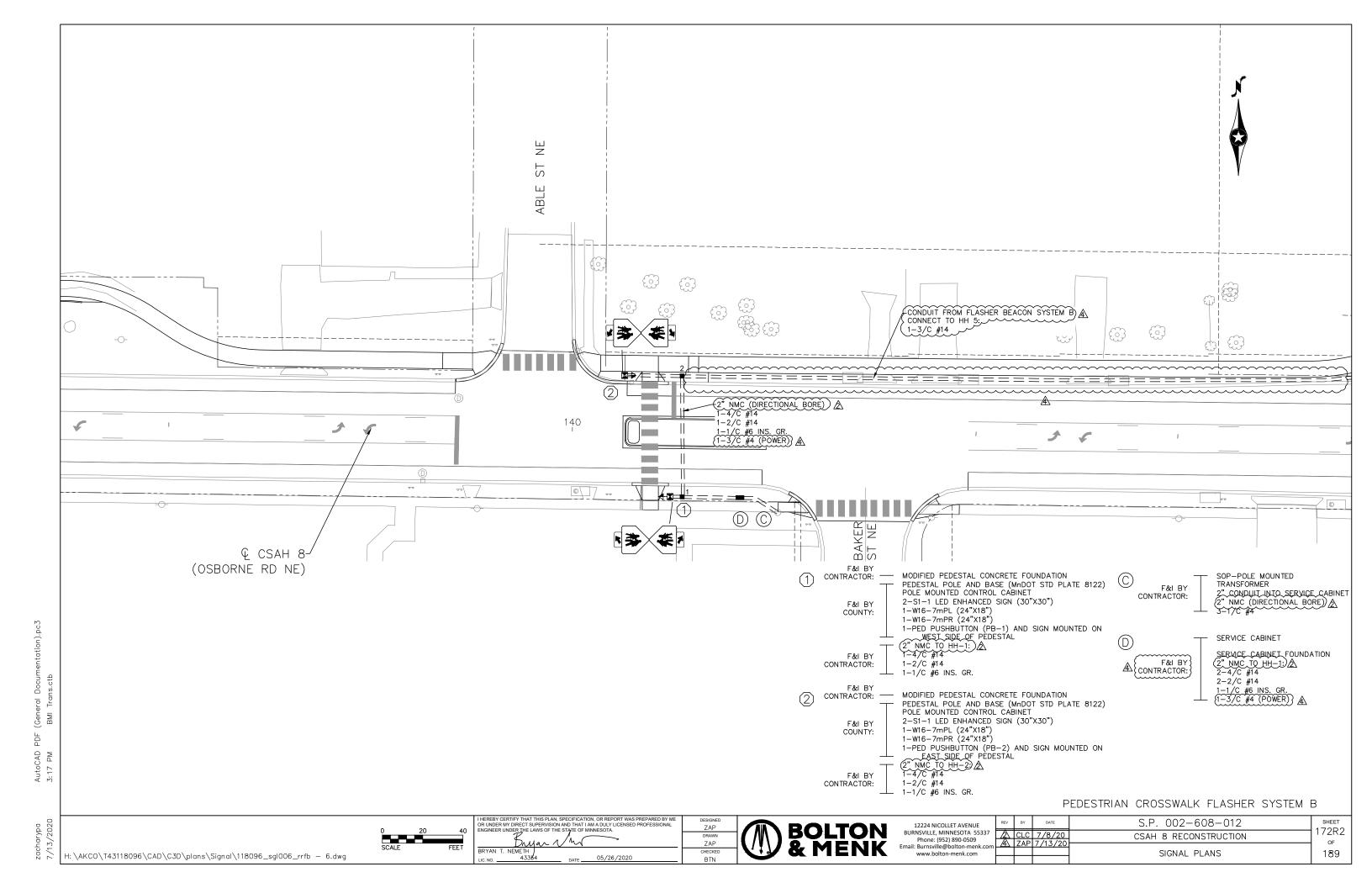
entation).pc3 eral Documⁱ Trans.ctb (Gene BMI PDF AutoCAD 1 2:50 PM

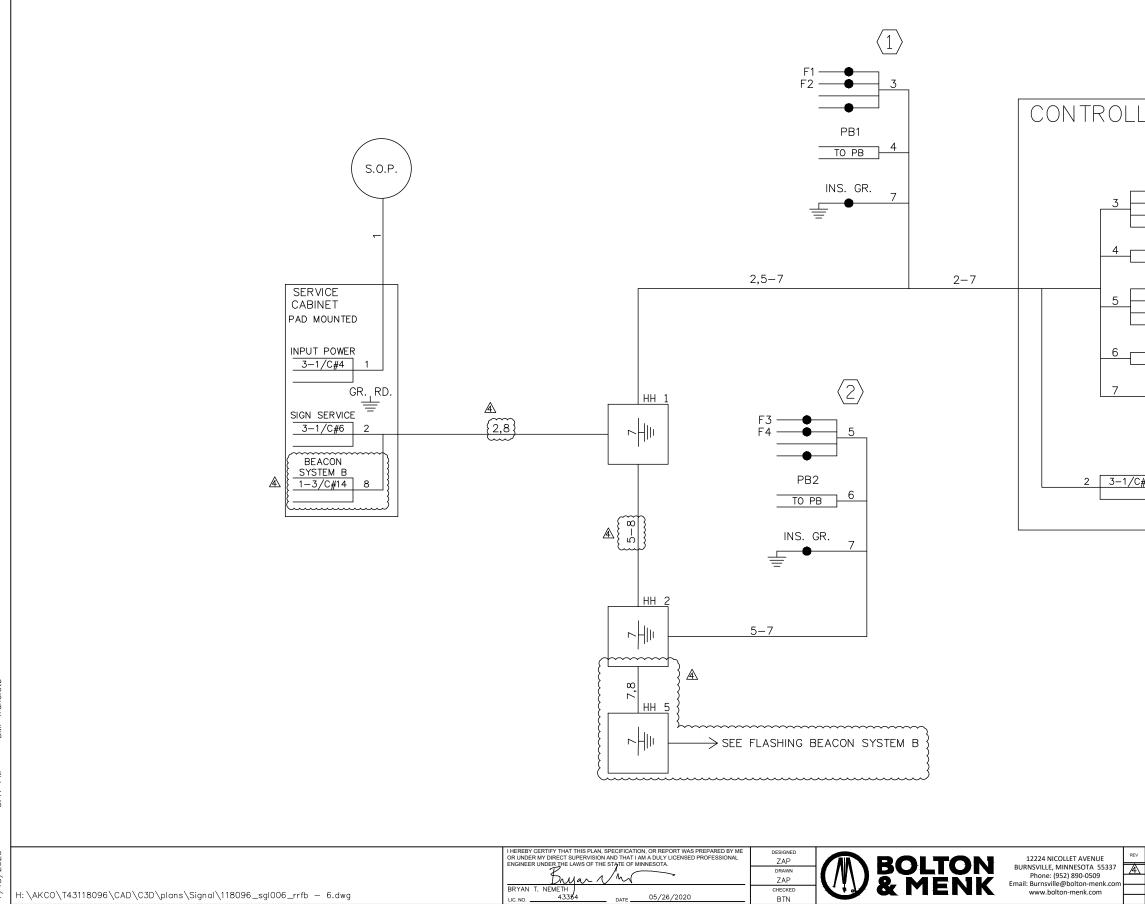


- PEDESTAL BASE AND WIND COLLAR PER MnDOT STD PLATE 8122	\bigwedge	ANOKA COUNTY FURNISH AND INSTALL
FINISHED GRADE		
- MODIFIED PEDESTAL FOUNDATION (5' MINIMUM DEPTH), PER MODOT	\checkmark	CONTRACTOR FURNISH AND INSTALL

EV	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	169 of
			SIGNAL PLANS	189
				100

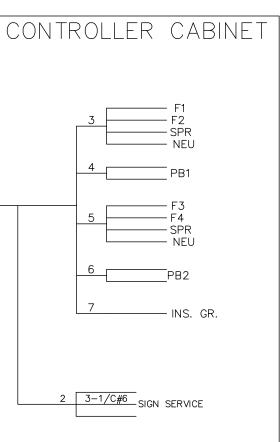
entation).pc3 eral Docum Trans.ctb (Gene BMI PDF AutoCAD 1 3:17 PM

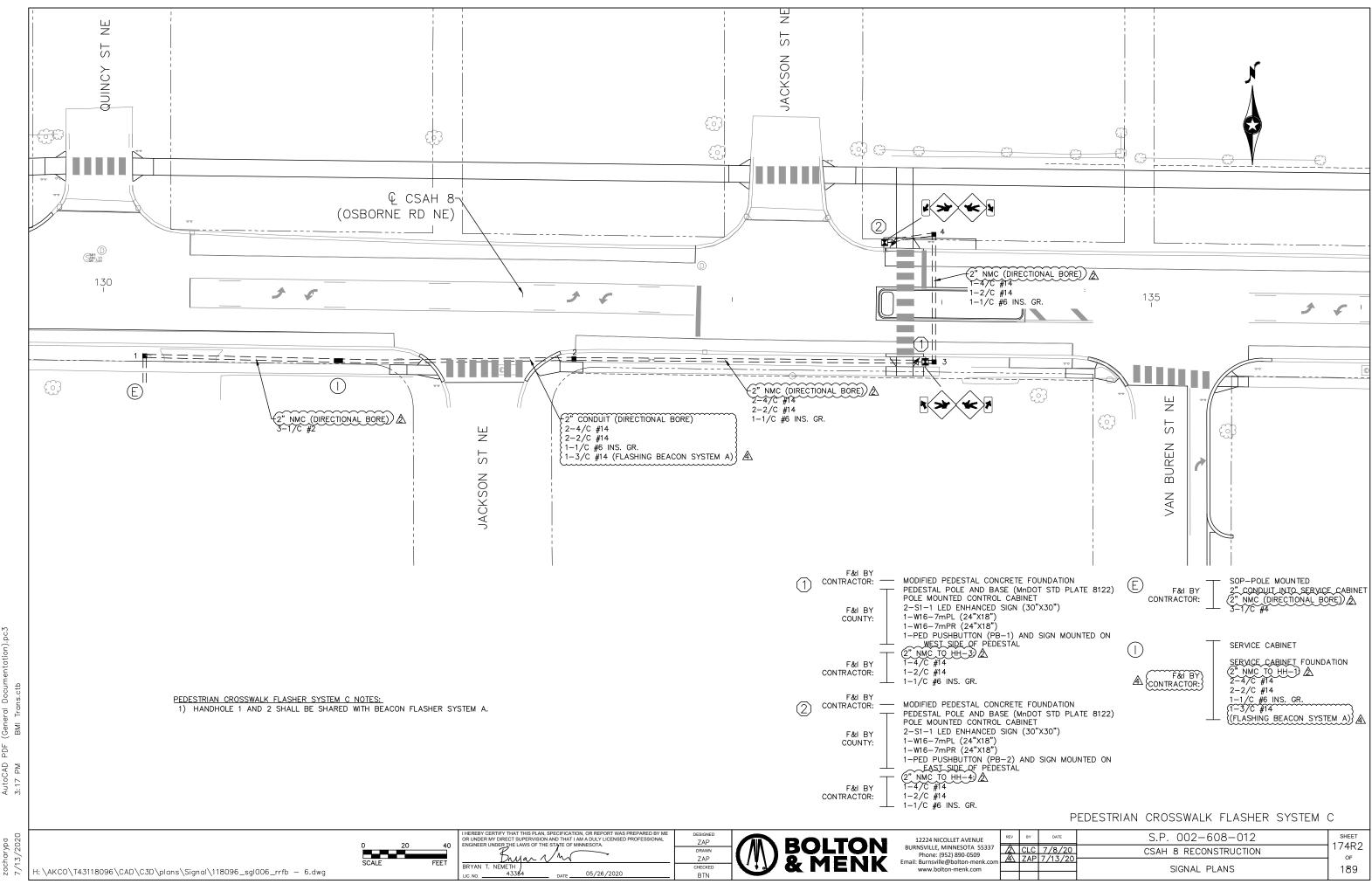



ура 2020		I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DESIGNED ZAP	BOLTON	12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 55337	REV
zachar) 5/28/2	H:\AKCO\T43118096\CAD\C3D\plans\Signal\118096_sgl006_rrfb - 6.dwg	BRYAN T. NEMETH LIC: NO. 43384 DATE 05/26/2020	ZAP CHECKED BTN	0 MENIK	Phone: (952) 890-0509 Email: Burnsville@bolton-menk.com www.bolton-menk.com	

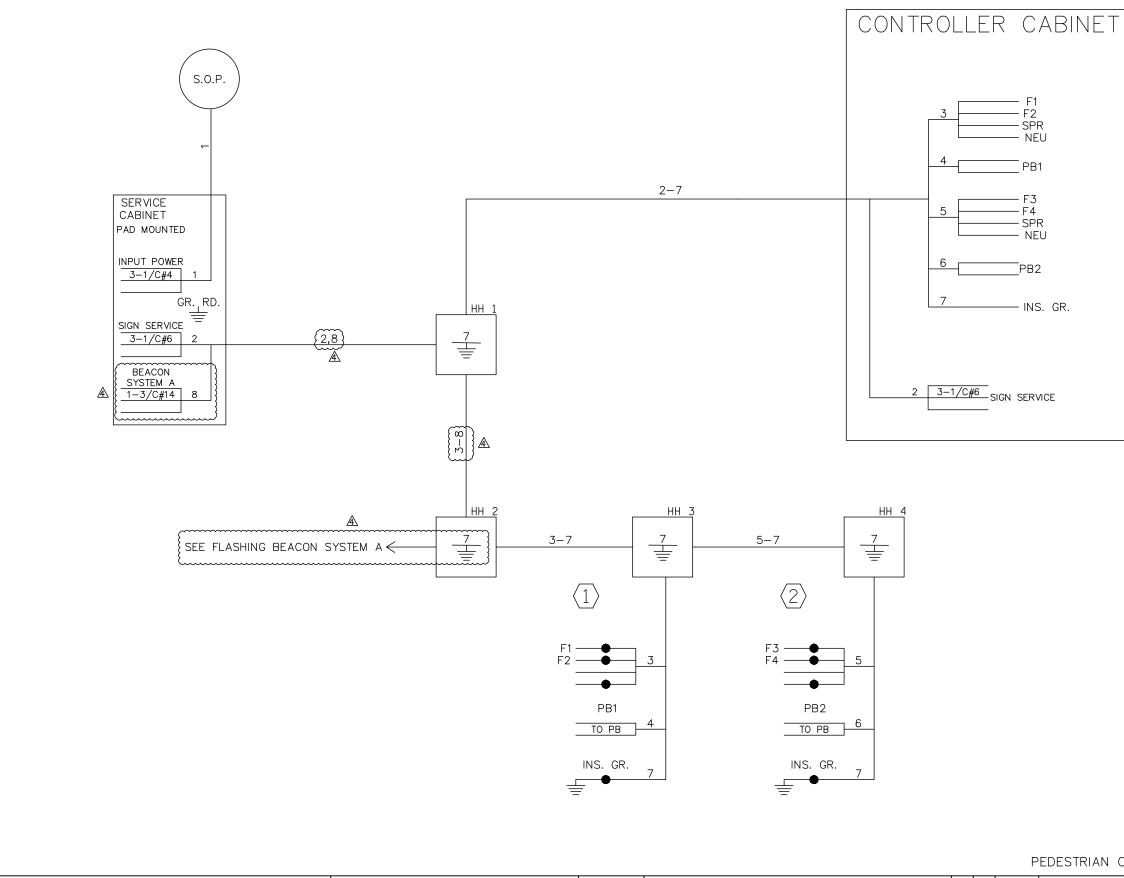
AutoCAD PDF (General Documentation).pc3 2:50 PM BMI Trans.ctb

PEDESTRIAN CROSSWALK FLASHER SYSTEM A


V	BY	DATE	S.P. 002-608-012	SHEET
			CSAH 8 RECONSTRUCTION	171
_				OF
_			SIGNAL PLANS	189


AutoCAD PDF (General Documentation).pc3 3:17 PM BMI Trans.ctb

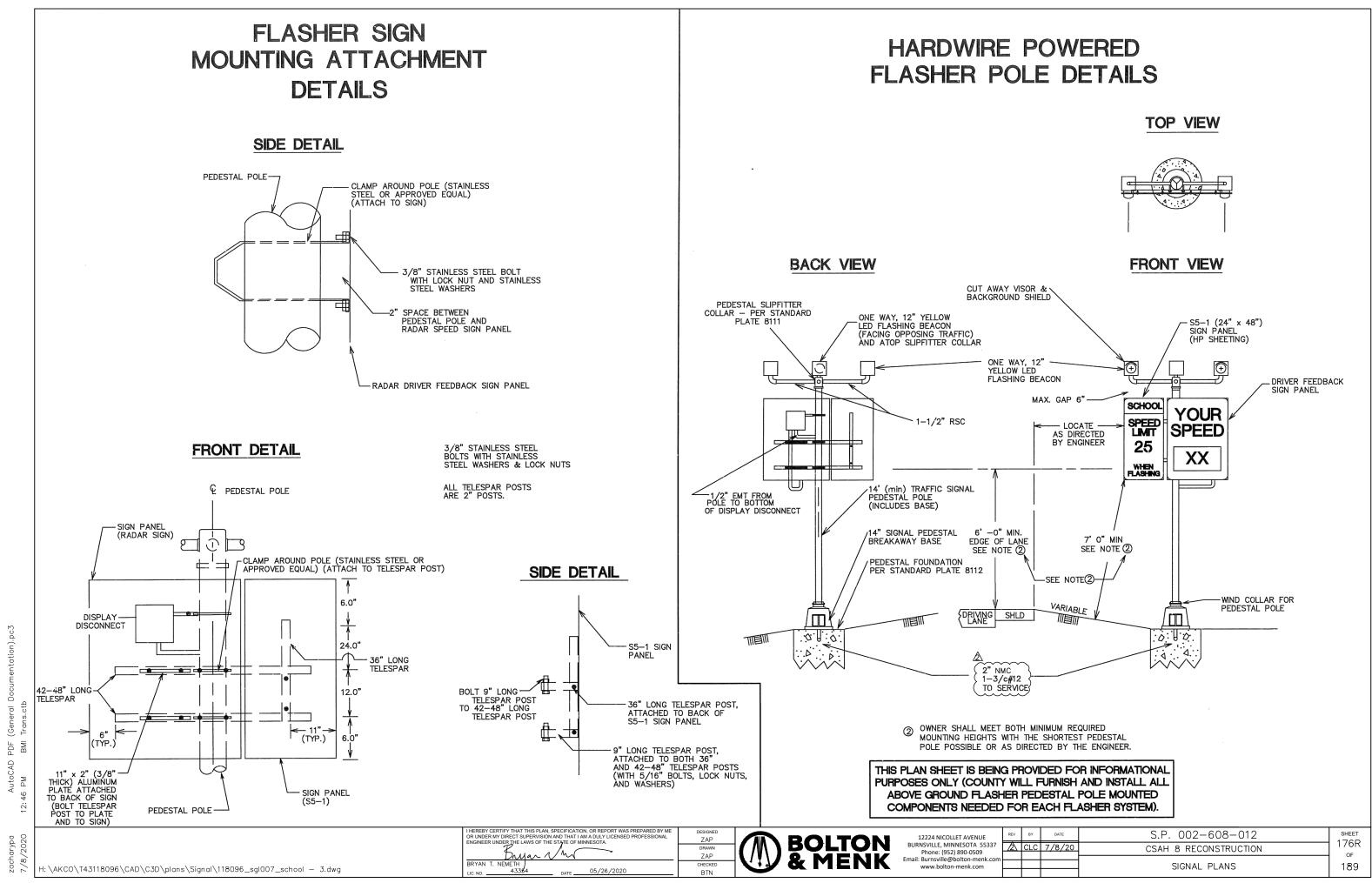
> zacharypa 7/13/2020

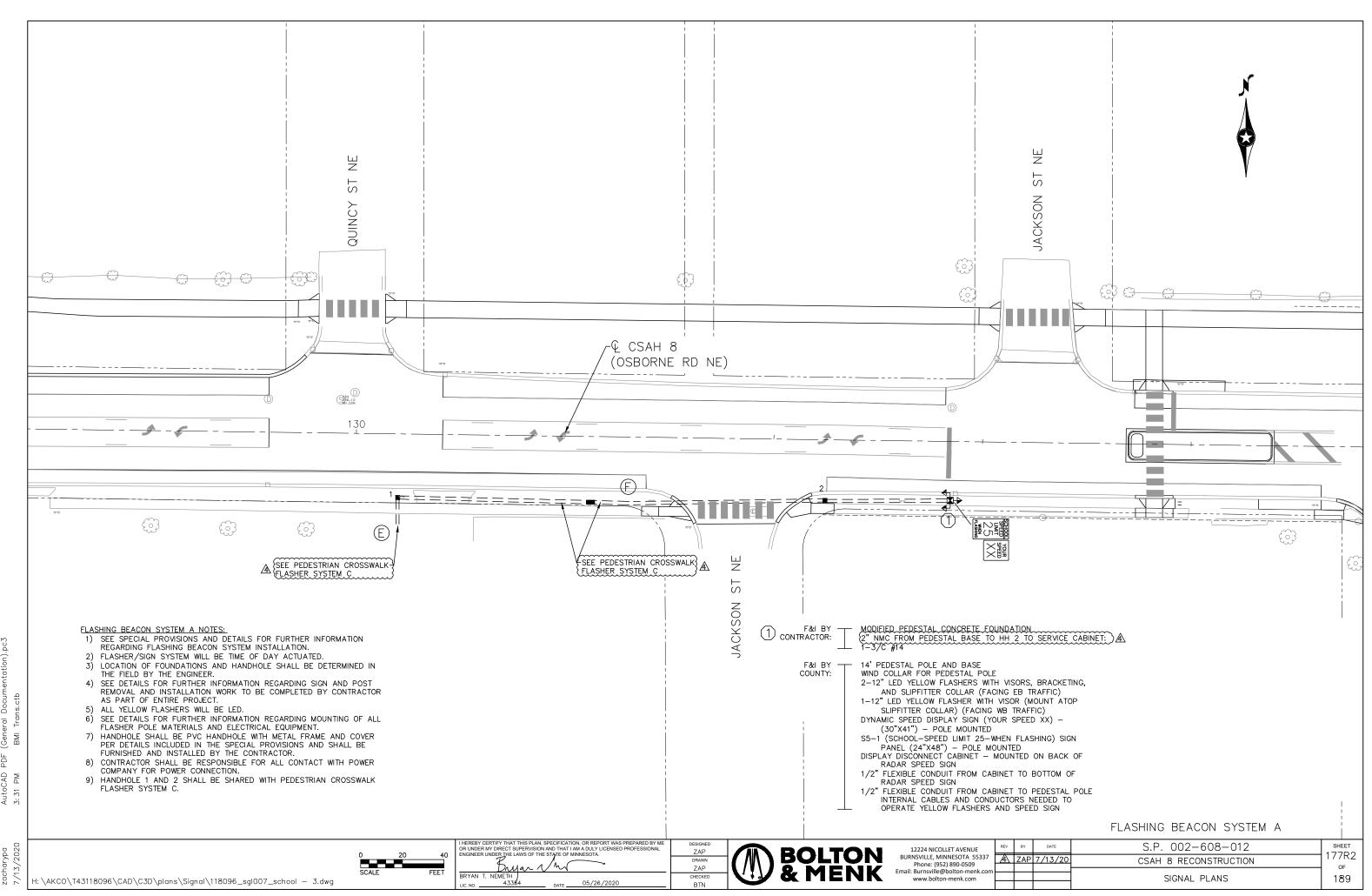


PEDESTRIAN CROSSWALK FLASHER SYSTEM B

v	BY	DATE	S.P. 002-608-012	SHEET
Δ	ZAP	7/13/20	CSAH 8 RECONSTRUCTION	173R
			SIGNAL PLANS	189

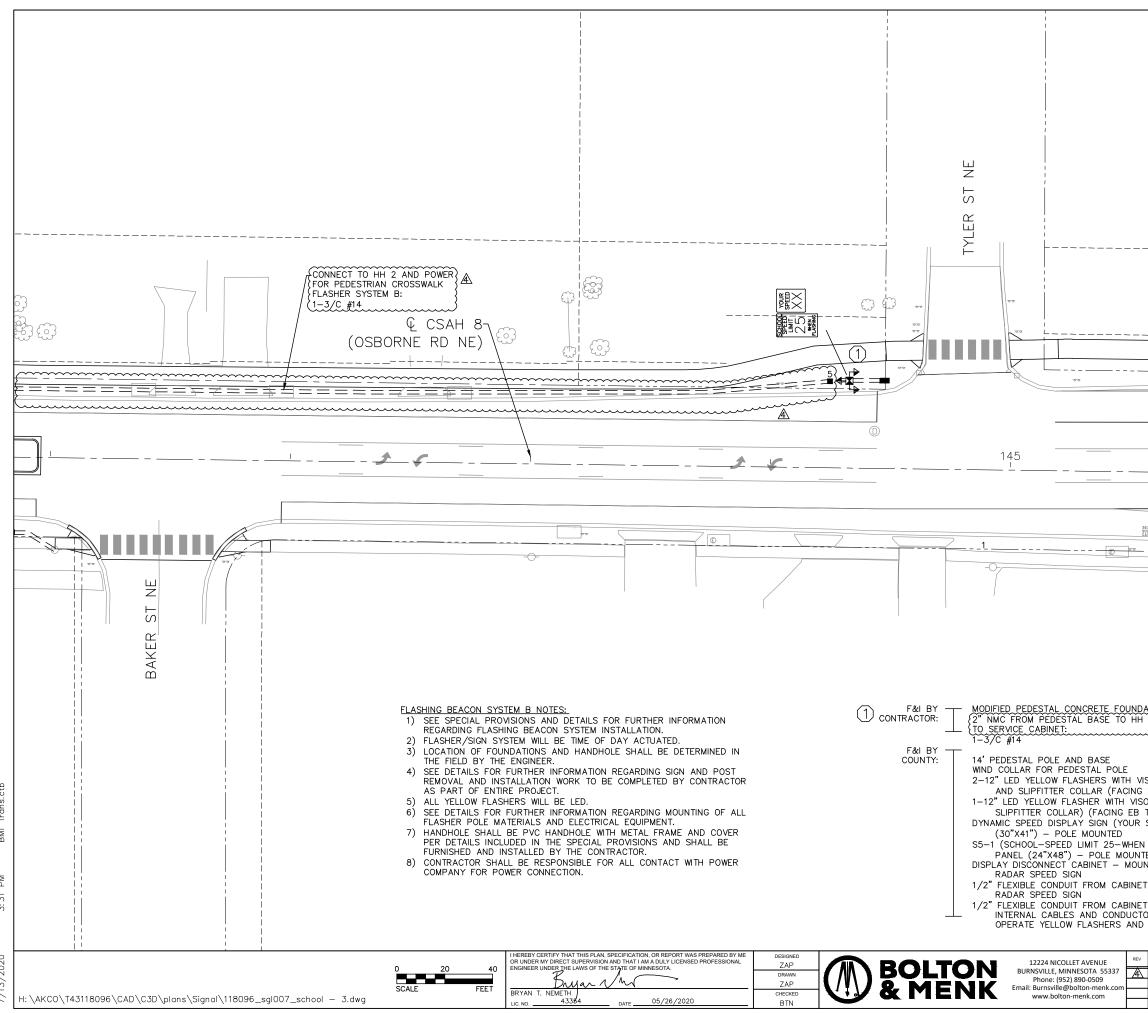
tation).pc3 Is.ctb Doc eral . Tran (Gene BMI PDF CAD PM Auto(3:17




 I HereBy CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION ADD THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.
 Designed ZAP

 BRYAN T. NEMETH LIC. NO.
 0.5/26/2020
 Date
 0.5/26/2020
 Designed Date
 Designed ZAP
 Designed ZAP
 Designed DRAWN ZAP
 Designed DRAWN
 Designed DRAWN
 Designed ZAP
 Designed DRAWN
 #### PEDESTRIAN CROSSWALK FLASHER SYSTEM C

v	BY	DATE	S.P. 002-608-012	SHEET
7	ZAP	7/13/20	CSAH 8 RECONSTRUCTION	175R of
			SIGNAL PLANS	189



(Gei PDF BMI

ŏ Trai (Gene BMI CAD PM Auto(3: 31

pc3

AutoCAD PDF (General Documentation).pc3 3:31 PM BMI Trans.ctb

acharypa 7/13/2020

	Ň	
		¢.
۸	<u> </u>	
<u> </u>		
3015 50 2003 02 2004 //Aure		-0-
2ATION 1 5 TO HH 2 TO HH 1	}∕	
/ISORS, BRACKETING, G WB TRAFFIC) SOR (MOUNT ATOP TRAFFIC) SPEED XX) - N FLASHING) SIGN TED JNTED ON BACK OF		
ET TO BOTTOM OF ET TO PEDESTAL POLE TORS NEEDED TO D SPEED SIGN	FLASHING BEACON SYSTEM B	
/ BY DATE ZAP 7/13/20	S.P. 002-608-012 CSAH 8 RECONSTRUCTION SIGNAL PLANS	^{SHEET} 178R2 ^{ог} 189

075	ESMT T/E ! INP R/W	STA 103+50	075	990		STA 106+50		880	
875	T/E INP R/W	1.1%	875	880	ESMTINP R/W			INP R/W	
970	WATER GAS			975		2.1%	2.4% 2.4%		
870	•		870	875	WATER GAS	3	2.4% 2.4%	875	
005		EXIST EL = 873.5	205	070		EXIST EL = 875.	9	070	
865 80	70 60 50 40 30	DESIGN EL = 873.49 20 10 ¢ 10 20 30	40 50	870 80	70 60 50 40 3	$\begin{array}{c c} & \text{DESIGN EL} = 87\\ 0 & 20 & 10 & \mathbf{C} \end{array}$	5.97 10 20	30 40 50	
				880		STA 106+00		880	
	ESMT								
875		STA 103+00	875	875		3.2%		<u>* **</u> 875	
	VAJER 0.9%	0.9%		070	WATER GAS				
870	GAS		870	870				870	
		EXIST EL = 873.0				EXIST EL = 875.	4		
865 80	70 60 50 40 30	DESIGN EL = 873.08 20 10 C 10 20 30	40 50	865 80	70 60 50 40 30	DESIGN EL = 87	5.46 10 20	30 40 50	
875		STA 102+50	875	880		STA 105+50		880	
	2.0% 0.8%	0.8% 2.0%			ESMT INP R/W				
870	WATER GAS		870	875	27 1.5% 20 	3.6%	2.0% -2.0	9%875	
		EXIST EL = 872.7			WATER GAS	EXIST EL = 874.			
865 80	70 60 50 40 30	$\frac{1}{10} \frac{1}{10} \frac$	40 50	870 80	70 60 50 40 3	DESIGN EL = 87	5.01 10 20	30 40 50	
00				00	70 80 30 40 3				
875	T/E ESMT INP R/W	STA 102+00	875	880		STA 105+00		880	
	1.6 2.0% 1.2%	1.2%1.9%			ESMT INP R/W				
870	WATER GAS		870	875		3.4%	2.1%2;	875	
					WAJER GAS				
865		EXIST EL = 872.3 DESIGN EL = 872.38	865	870		DESIGN EL = 87	1.62	870	
80	70 60 50 40 30	20 10 Ç 10 20 30	40 50	80	70 60 50 40 3 ESMT INP R/W	0 20 10 (10 20	30 40 50	
875		STA 101+64.06	875	875	7.	STA 104+50	3.4% 3.	875	
		1.7% 2.4%			WALER	2.7%	3.	4%, 7%,	
870	WATER GAS		870	870	CAS			870	
865		EXIST EL = 872.4 DESIGN EL = 872.39	865	865		EXIST EL = 874. DESIGN EL = 87	.24	865	
80	70 60 50 40 30	20 1p Ç 1p 20 30	40 50	80	70 60 50 40 3 ESMT	0 20 10 (10 20	30 40 50	
875		STA 101+10	875	875		STA 104+00		875	
	10% 2.0% 1.3%	1.3% 0.9%				1.8%	4.0% 4	.0%	
870	WATER GAS		870	870	WALER GÅS			870	
865		EXIST EL = 872.5 DESIGN EL = 872.54	865	865		EXIST EL = 873. DESIGN EL = 87	3 3.87	865	
80	70 60 50 40 30	20 10 C 10 20 30	40 50	80	70 60 50 40 3	0 20 10 Ç	10 20	30 40 50	
		OR UNDER MY DIRECT SUPERVIS	AN, SPECIFICATION, OR REPORT WAS PREPARED I SION AND THAT I AM A DULY LICENSED PROFESSIO THE STATE OF MINNESOTA.	BY ME DESIGNED NAL TJT		12224 NICOLLET AVENUE REV BY DAT		S.P. 002-608-012	SHEET
		Coly Chit	THE STATE OF MINNESOTA.	drawn TJT		12224 NICOLLET AVENUE REV BY DAT JRNSVILLE, MINNESOTA 55337		SAH 8 RECONSTRUCTION	179 0F
\AKCO\T4	43118096\CAD\C3D\118096_xs.dwg	SCALE FEET CODY L/CHRISTIANSON LIC. NO	DATE 05/26/2020	CHECKED CLC		www.bolton-menk.com		CROSS SECTIONS	189

						885	I I I I I I I I I I I I I I I I I I I		0.07	STA 111+50	87	INP R/W 885	
880		INP R/W	STA 109+00		880	880	5% 1.5% 5.8%					6880	
	ESMT	10% 1.5%	3.4%	2.6%			WĄTER					•	
875		WATER			• 875	875						875	
			EXIST EL = 878.3						EVIS	T EL = 882.4			
870 80	70 60	50 40 30	DESIGN EL = 878.37	7 10 20 30	40 50	870 80	70 60	50 40	30 20 10	$\frac{1}{C} = \frac{1}{882.07}$	20	30 40 50	
											20		
						885		INP R/W		STA 111+00		INP_R/W 885	
000			STA 108+50		880		SMT		1.0%	1	5%		
880	ESMT !	INP R/W		2.00	880	880	14% 1.5% 3.6%					GAS 880	
875			2.9%		GAS 875	875	WATER					• 875	
070		WATER				073						073	
870			EXIST EL = 878.0 DESIGN EL = 877.97	7	870	870			EXIS	T EL = 881.4 GN EL = 881.20		870	
80	70 60	50 40 30		10 20 30	40 50	80	70 60	50 40	30 20 10	¢ 10	20	30 40 50	
880			STA 108+00		880	885				STA 110+50		885	
	ESMT		2.3%	1.9%				INP R/W				GASINP R/W	
875		WATER			_{GAŞ} 875	880	WA ⁺ ER	,	1.9%	2.	5%	880	
		WATER (~		<u> </u>					
870			EXIST EL = 877.4 DESIGN EL = 877.5	1	870	875			EXIS DESI	T EL = 880.3 GN EL = 880.35		875	
80	70 60	50 40 30	20 10 C	10 20 30	40 50	80	70 60	50 40	30 20 10	<u>ହ</u> 10	20	30 40 50	
880			STA 107+41.40		880	880 ^{ESM}		INP R/W	2.7%	STA 110+00	79	880	
			1.9%		H ST NE		2% 1.5%					GAS	
875		WAIER GAS			875	875	/					875	
								\bigcirc	EXIC	T. 51 070 5			
870 80	70 60	50 40 30	EXIST EL = 876.7 DESIGN EL = 876.92 20 10 Ç	2 20 30	40 50	870 80	70 60	50 40	30 20 10	T EL = 879.5 GN EL = 879.57 C 10	20	30 40 50	
								30 40			20		
880		ESMTINP R/W	STA 107+00		INP R/W 880	880	ESMT	INP		STA 109+50	3.000	880	
		2% 1.5% 5.7%	1.4%	2.7%	***		8% 1.5%					GAS	
875		WATER GAS		2.7%	875	875		WATER				GAS 875	
070			EXIST EL = 876.4		070	070			EXIS	T EL = 878.8		070	
870 80	70 60	50 40 30	DESIGN EL = 876.49	a 10 20 30	40 50	870 80	70 60	50 40	000 20 10	$\frac{\text{GN EL}}{(1-1)} = 878.89$	20	30 40 50	
			0 25	I HEREBY CERTIFY THAT THIS PLAN, SPECI OR UNDER MY DIRECT SUPERVISION AND T ON ENGINEER UNDER THE STAT	FICATION, OR REPORT WAS PREPARED I	BY ME DESIGNED			12224 INICOLLET AVENUE	V BY DATE		.P. 002-608-012	SI 1
			0 25 SCALE FEE		E G. WINNEGOTA.	DRAWN			BURNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 mail: Burnsville@bolton-menk.com		CS	AH 8 RECONSTRUCTION	1

890	ESMT		INP R/W	[STA 114+00]		INP R/W	890	ESMT	INP R/W	STA 1	16+50]	INP R/W890	,
885	. I .	1.5%		3.6%3.6	3%	885	885					GAS • 885	
880				EXIST EL = 885.9 DESIGN EL = 886.12		GAS • 880	880			EXIST EL DESIGN FI	= 888.4 - = 888.38	880	
80	70	0 60 50	0 40 30 2	20 10 C 10	0 20 30	40 50	80	70 60	50 40 30		1 0	20 30 40 50	
890				STA 113+51.44		890							
885	TERF	RACE RD NE	2.1%	38	3%	885	890	ESMT	INP R/W	STA 1	16+00	INP R/W 890)
000						GAS				1.8%	2.1%		
880		WATER				880	885					GAS 885) <u> </u>
875				EXIST EL = 885.2 DESIGN EL = 885.53		875	880			EXIST EL DESIGN FI	= 887.9 = 887.88	880	,
80 890	70	0 60 50 WATER	0 40 30 :	20 10 Ç 10 [STA 113+00]	0 20 30	40 ^{GAS} 50 890	80	70 60	50 40 30		Ç 10	20 30 40 50	
890						090							
885	ESMT		INP R/W	1.0%	0.97	INP R/W	890			STA 1	.15+50	INP R/W 890	•
	8%	1.5% 6.3%			9%			ESMT 1.5%		1.5%	2.6%		
880						GAS 880	885	1.5%				GAS 885	
875		WATER	0 40 30 3	EXIST EL = 884.6 DESIGN EL = 884.69 20 10 C 10		40 50	880	70 60	50 40 30		= 887.4 = 887.39		
80	70	0 60 50	INP R/W		0 20 30	INP R/W		/0 60	50 40 30				
885	ESMT	0.177		STA 112+50 1.5%2	1%	885	890	ESMT	INP R/W	STA 1	15+00		
880	15%	<u>1.5% 2.1%</u>				GAS 880	885	1.5%		2.0%	3.3%	885	
875		WATER		EXIST EL = 883.9 DESIGN EL = 883.82		875	880			EXIST EL	= 886.8 = 886.95	880)
80	70) 60 50	0 40 30 :	20 10 C 10		40 50	80	70 60	50 40 30		2 10	20 30 40 50	
885			INP R/W	STA 112+00		GASINP R/W 885	890			STA 1	14+55	HOSPITAL RIGHT IN 890	
	ESMT	1.5% <u>\4.4%</u>		0.2%1	1%	L-		ESMT	INP R/W	0.09	2.007		
880	'					. 880	885	1.5%		2.8%	<u> </u>	2.4%885	
875				EXIST EL = 883.2 DESIGN EL = 882.94		875	880			EXIST EL DESIGN EL	= 886.4 _ = 886.58	880)
80	70	0 60 50	0 40 30 :	20 10 Ç 10	0 20 30	40 50	80	70 60	50 40 30	20 10	10	20 30 40 50	
				0 25 50	I HEREBY CERTIFY THAT THIS PLAN, SPECIFI OR UNDER MY DIRECT SUPERVISION AND TH ENGINEER UNDER/THE/LAWS OF THE STATE	AT I AM A DULY LICENSED PROFESSIO	BY ME DESIGN NAL TJT			12224 NICOLLET AVENUE RNSVILLE, MINNESOTA 55337	DATE	S.P. 002–608–012	Si
				0 25 50 SCALE FEET	and the the state	S. MINICOTA.	DRAW			RNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 il: Burnsville@bolton-menk.com		CSAH 8 RECONSTRUCTION	1

					895			STA 121+50	_{INP-R/W} 895	.
225				205		ESMT 7% 1.5%	0.3%	1.3%1.3% - 1.3%	2.6%	
895	ESMT INP R/W	STA 119+00		895 INP R/W	890				GAS	
890	1.5%2.0%			890	885				885	ż
		EXIST EL = 890.9		GAS •		W	ATER	EXIST EL = 892.0		
885 80 70	60 50 40 30 2	DESIGN EL = 890.80	20 30	40 50	880 80	70 60) 50 40	$\frac{1}{30} \qquad 20 \qquad 10 \qquad	10 20 30 40 50	
					895			STA 121+00	INP R/W895	; ;
						ESMT	INP R/W 0.1%	1.4%1.4% 1.4%		
895		STA 118+50		895 INP R/W	890					·
890	ESMT INP R/W	1.6%1.6%		890	885				885	; ;
				o		WA	TER			
885 80 70	60 50 40 30 2	EXIST EL = 890.4 DESIGN EL = 890.37 0 10 C 10	20 30	40 50	880 80	70 60	50 40	EXIST EL = 891.7 DESIGN EL = 891.8 30 20 10 C	3 88C	1
895		STA 118+00		895				STA 120+50	INP R/W895	;
	ESMT INP R/W			INP R/W		ESMT				
890		1.6% 1.5%	1.5% 4%	890	890	!5_1.5%	0.3%	1.4%1.4% - 1.4%	2.6%	<u>, </u>
885		EXIST EL = 889.9		GAS • 885	885			EXIST EL = 891.6	•	:
80 70	60 50 40 30 2	DESIGN EL = 889.87 0 10 C 10	20 30	40 50	80	70 60	50 40	$\frac{1}{30} \frac{1}{20} \frac{1}{10} \frac{1}{6} \frac$	10 20 30 40 50	
895		STA 117+24.70		895	895			STA 120+00	INP R 8,95)
000			HOSPITAL E		800	ESMT 7. <u>2 1.5</u>	INP R/W % 1.4%		2.7%6%000	,
890	1.5%	1.4%0	8%3	.4%890	890				GAS GAS	
885		EXIST EL = 889.2 DESIGN EL = 889.12		GAS 885				EXIST EL = 891.4 DESIGN EL = 891.3		<u>,</u>
80 70 800 ESMT	60 50 40 30 2		20 30	40 50	80	70 60	50 40		10 20 30 40 50	
890 ESMT		[STA 117+00]	.8%	890	895	ESMT	INP R/W	STA 119+50	895	
885				GAS 885	890	<u>1</u>	5% 2.0%	1.2%2)
		EXIST EL = 888.9						EXIST EL = 891.2	GAS •	_
880 80 70	60 50 40 30 2	DESIGN EL = 888.87	20 30	40 50	885 80	70 60	50 40	DESIGN EL = 891.1	4 885 10 20 30 40 50	
		0 25 50	I HEREBY CERTIFY THAT THIS PLAN, S OR UNDER MY DIRECT SUPERVISION . ENGINEER UNDER THE LAWS OF THE	SPECIFICATION, OR REPORT WAS PREI AND THAT I AM A DULY LICENSED PRO STATE OF MINNESOTA.	PARED BY ME DESIGNAL TJT DRAWN		NENK	12224 NICOLLET AVENUE BY DATE BURNSVILLE, MINNESOTA 55337	S.P. 002-608-012 CSAH 8 RECONSTRUCTION	

895	ESMT	INP R/W		STA 124+			895	900				STA 126+66.20		900	
	1.5%	1.4%		2.2% 2.2% 2.5%	2.5%				MON	IROE ST NE					
890						GAS •	890	895				2.	7%	895	
								-		1.3%	2.078		GAS		
885							885	890						890	
	TAW														
880)		EXIST EL = 8 DESIGN EL =	893.18		880	885				EXIST EL = 894.4 DESIGN EL = 894.42		885	
80	70 60	50 40	30 20	10 🧯	10	20 30 40	50	80	70 60	50 40	30 20	10 4 10	20 30	40 50	
895	ESMT	INP R/W		STA 123+	70		895								
	0.7% 1.5%	3.2%	4.0% 2.1%	2.1% 2.5%	2.5%										
890						GAS	890	900				STA 126+00		900	
885							885	895	ESMT	INP R/W			INP R/W	895	
	WATE	R						-	1.5%	0.2%		2.8% 2.			
880				EXIST EL = 8 DESIGN EL =			880	890				EXIST EL = 894.1 DESIGN EL = 894.09	GAS •	890	
80	70 60	50 40	30 20	10 ¢		20 30 40	50	80	70 60	50 40	30 20	10 € 10	20 30	40 50	
895	ESMT			STA 123+	00		895								
	1.5%	INP R/W 0.7%		<u> </u>		INP R/W									
890			2.1%	2.1% _ 2.1% 2.62	2.6%	GAS	890	900				STA 125+50		900	
000						0	030	500						500	
885							885	895	ESMT	INP R/W			INP R/W	895	
000	TAW	ER					000	090		0.3%		2.6% 2.	3%	095	
0.00				EXIST EL = 8	93.0		880	800				2.6%2. EXIST EL = 893.9	•	800	
880 80	70 60	50 40	30 20	DESIGN EL =	892.73 10	20 30 40	880 50	890 80	70 60	50 40	30 20	$\frac{\text{DESIGN EL}}{10} = 893.85$	20 30	40 50	
895				STA 122+54		MADISON ST NE	895	895	ESMT	INP R/W		STA 125+00 2.5% 2.	INP R/W	895	
	0.4% 1.5%	1.2%	4.0% 1.8%	1.8%	3.1%	1.1%		-				2.500	······		
890						GAS	890	890					•	890	
				EXIST EL = 8	92.3							EXIST EL = 893.6			
885 80	70 60	50 40	30 20	$\frac{10}{0}$	892.53 10	20 30 40	885 50	885 80	70 60	50 40	30 20	$\frac{\text{DESIGN EL}}{10} = \frac{893.63}{10}$	20 30	40 50	
895	ESMT	INP R/W		STA 122+0	00	INP R	895 ×/w	895	ESMT	INP R/W		STA 124+50		895	
	12% 1.5%	0.1%		1.6% 1.6%	2.8%				1.5%	0.7%	2.3	3% 2.3% 2.3%	2.3%		
890						GAS	890	890					GAS •	890	
885				EXIST EL = 8 DESIGN EL =	892.28		885	885				EXIST EL = 893.5 DESIGN EL = 893.40		885	
80	70 60	50 40	30 20	10 Ç	10	20 30 40	50	80	70 60	50 40	30 20	10 4 10	20 30	40 50	
					I HEDED	Y CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPC	RT WAS PREPARED	Y ME DESIG							
				0 25	OR UND	ER MY DIRECT SUPERVISION AND THAT I AM A DULY LI ER UNDER/THE/LAWS OF THE STATE OF MINNESOTA.	ICENSED PROFESSION	NAL TJ		OLTON MENK	12224 NICOLLET AVE BURNSVILLE, MINNESOTA	\$ 55337		02-608-012 RECONSTRUCTION	
		_xs.dwg		SCALE	FEET CODY	Chitanson		TJ		MENI	Phone: (952) 890-05 Email: Burnsville@bolton-r www.bolton-menk.c	nenk.com		S SECTIONS	

900	ESMT		STA 128+50		900							
895	1.5%	INP R/W	1.6% 2.	INP R/W	895							
890				GAS •	890	900			STA 130+50		900	
885	WAT	ER S			885	895	ESMT	INP R/W	2.5%	1NP R/W	895	
			EXIST FI = 895.4						EXIST EL = 896.6	GAS ¢		
880 80	70 60 5	0 40 30	EXIST EL = 895.4 DESIGN EL = 895.43 20 10 C 10	20 30 4	880 40 50	890 80	70 60 50	0 40 30	DESIGN EL = 896.66		890 40 50	
900	ESMT		STA 128+00		900							
895		INP R/W 3.02	1.9% 2.	INP R/W	895	900			STA 129+97.40		900	
890				GAS •	890	895	QUINCY \$T NE	2.5%	1.0%	2.2%GAS	895	
885			EXIST EL = 895.1 DESIGN EL = 895.15		885	890			EXIST EL = 896.3 DESIGN EL = 896.31	•	890	
80	70 60 5	0 40 30	20 10 Ç 10	20 30 4	40 50	80	70 60 50	D 40 30	20 10 Ç 1		40 50	
900	ESMT		STA 127+50		900	900	ESMT	INP R/W	STA 129+50	INP R/W	900	
895		INP R/W 2.5%	2.2% 2		895	895	1.5%	0.5%	1.0%	<u>2.4%</u> GAS GAS	895	
890 80	70 60 5	0 40 30	EXIST EL = 894.7 DESIGN EL = 894.88 20 10 C 10	GAS • 20 30 4	890 40 50	890 80	70 60 50	0 40 30	EXIST EL = 896.0 DESIGN EL = 896.00 20 10 C 1		890	
900	,0 00 5		STA 127+30		900	900			STA 129+00		900	
895	ESMT	INP R/W 		INP R/W	895	895	ESMT	INP R/W	1.3%	INP R/W	895	
			2.4%2	GAS						GAS		
890					890	890					890	
885 ⁸⁰	70 60 5	0 40 30	EXIST EL = 894.6 DESIGN EL = 894.77 20 10 C 10	20 30 4	885 40 50	885 80	70 60 50	0 40 30	EXIST EL = 895.7 DESIGN EL = 895.70 20 10 C 1		885	
			0 25 50	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICA OR UNDER MY DIRECT SUPERVISION AND THAT ENGINGER UNDER/THE/LWAYS OF THE STATE OF	I AM A DULY LICENSED PROFESSIO	BY ME DESIG			DLLET AVENUE REV BY DATE		-608-012	s
	B096\CAD\C3D\118096_x		SCALE FEET	CODY L/CHRISTIANSON		DRAV TJ CHEC		LTON IENK	IINNESOTA 55337 52) 890-0509 @bolton-menk.com		CONSTRUCTION	1

900	ESMT		STA 133+00		900	905					STA 135+50		905	
300			2.0% 3.3%		300	300	ESMT		INP R/W				305	
005			2.0/0		805		1.5%	+				INP R/W		
895				GAS	895	900				2.3%_	2.6%		900	
												GAS •		
890			EXIST EL = 898.4 DESIGN EL = 898.40		890	895					EXIST EL = 900.7 DESIGN EL = 900.61		895	
80	70 60 50	40 30 20	10 (10	20 30 40	50	80	70 60	50 4	40 30	20 10	D Ç 10	20 30 40	50	
900			STA 132+50	INP R/W	900	905					STA 135+10.10		905	
	ESMT		3.6%3.0%											
895				GAS	895	900	1.5%	r		0 19		VAN BUREN ST NE	900	
				•						2,4%	3.2%	5.4%		
800					800	805						GAS •	90F	
890	WĄTER				890	895							895	
			EXIST EL = 898.0								EXIST EL = 900.3			
885			DESIGN EL = 898.02		885	890					DESIGN EL = 900.26		890	
80	70 60 50	40 30 20	10 4 10	20 30 40	50	80	70 60	50 4	40 30	20 10	D (£ 10	20 30 40	50	
						905					STA 134+50		905	
							ESMT							
900			STA 131+82.40		900	900	1.5%		INP R/W				900	
				JACKSON ST N						2.7%	3.1%			
895			3.3% 2.6%	0.7%	895	895						GAS	895	
090				GAS	090	090							090	
			EXIST EL = 897.4							F	EXIST EL = 899.6			
890	70 60 50	40 30 20	DESIGN EL = 897.56	20 30 40	890 50	890 80	70 60	50 4	40 30	20 10	DESIGN EL = 899.72	20 30 40	890 50	
80		40 50 20		20 30 40	50	00	70 60	50 4	+0 50	20 10		20 30 40	50	
900			STA 131+50		900	905					STA 134+00		905	
	ESMT	INP R/W	7 70 2 0 9	INP R/W										
895	1.5%		3.3% 2.9%		895	900	ESMT !		INP R/W			INP R/W	900	
				0			1.5%		·	4.0%	4.45	%		
890					890	895						GAS	895	
090					890	090							090	
	WATER		EXIST EL = 897.2							F	EXIST EL = 899.1			
885		40 70 00	DESIGN EL = 897.34	20 70 40	885	890			10 70	[DESIGN EL = 899.62	20 70 40	890	
80	70 60 50	40 30 20	10 (<u>1</u> 0	20 30 40	50	80	70 60	50 4	40 30	20 10	D (£ 10	20 30 40	50	
900			STA 131+00	INP R/W	900									
	ESMT	INP R/W												
895	1.5%		2.5% 2.9%		895	900		JACKSON	ST NE		STA 133+24.90		900	
				GAS					2.0%	1.8%	2.9%			
890					890	895						GAS	895	
030					090	030						•	030	
	WATER		EXIST EL = 896.9								EXIST EL = 898.5			
885 80	() 70 60 50	40 30 20	DESIGN EL = 897.00	20 30 40	885 50	890 80	70 60	50 4	40 30	20 10	DESIGN EL = 898.61	20 30 40	<u>890</u> 50	
00					50	60		JU 4						
				CERTIFY THAT THIS PLAN. SPECIFICATION OR REPO	ORT WAS PREPARED P	Y ME DESIGNED							010	
			0 25 50	CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPC R MY DIRECT SUPERVISION AND THAT I AM A DULY LI R UNDER THE LAWS OF THE STATE OF MINNESOTA.	ICENSED PROFESSION	DRAWN	B	OLTO MEN	12224 N BURNSVILLI	NICOLLET AVENUE E, MINNESOTA 55337	REV BY DATE	S.P. 002-608 CSAH 8 RECONSTR		SHEE 185
\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>			SCALE FEET	CHRISTIANSON 57052 DATE 05/26/		TJT CHECKED	-VIV &	MEŇ	Email: Burnsv	: (952) 890-0509 /ille@bolton-menk.con oolton-menk.com	n	CROSS SECT		
\AKCO\1431180	096\CAD\C3D\118096_xs.dwg		LIC. NO.	57052 DATE 05/26,	/2020	CLC			www.t	Soliton menkleutit		UNU33 3LUI		

905	ESMT	INP R/W	STA 138+50	1	NP R/W	905											
		1.5%	2.1%														
900				GAS		900											
0.05			EXIST EL = 902.4			0.05											
895 80	70 60 50	40 30 20	DESIGN EL = 902.	23 10 20 30) 40	895 50											
005			STA 138+00			905											
905	WESMT 4.3% 1.5%				NP R/W	903											
900			2.0%			900											
				GAS •													
895			EXIST EL = 902.2 DESIGN EL = 902.			895											
80	70 60 50	40 30 20	0 10 Ç	10 20 3C) 40	50											
910			STA 137+50			910											
505	/wESMT				NP R/W	905	905			ESMT INP R		STA 1	40+50		VP R/W	905	
			2.0%					+		i_ <u>_1.5%</u>	3	5.1%	<u>N</u> =	2.8%			
900				GAS		900	900							GAS		900	
			EXIST EL = 902.1			0.05	0.05					EXIST EL	= 903.0			005	
895 80	70 60 50	40 30 20	DESIGN EL = 901.	96 10 20 30) 40	895 50	895 80	70	60 50	40	30 20	DESIGN EL	= 903.11 10	20 30	40	895 50	
905 ^{INP R/} I	/w еѕмт		STA 137+00			905	905					STA 13	9+82.80			905	
	1.5%				NPR/W	303	903	ABL	E ST NE		_			~		305	
900			2.5%			900	900			<u>1.1</u>	%	1 .7%		GAS		900	
				GAS										0			
895			EXIST EL = 901.9 DESIGN EL = 901.	79		895	895					EXIST EL : DESIGN EL	= 902.8 = 902.58			895	
80	70 60 50	40 30 20	0 10 Ç	10 20 30) 40	50	80	70	60 50	40	30 20	10 (10	20 30	40	50	
905			STA 136+54.20			905	905		ES		P R/W	STA 1	39+50		IP R/W	905	
	VAN BUREN ST	NE <u>5.7%</u>	1 4 7	2.98								_1.4%	2.				
900						900	900							GAS		900	
			EXIST EL = 901.6	GĄS								EXIST EL	= 902.6				
895 80	70 60 50	40 30 20	DESIGN EL = 901.	52 10 20 30) 40	895 50	895 80	70	60 50	40	30 20	DESIGN EL	= 902.49 10	20 30	40	<u>895</u> 50	
			STA 136+00									STA 1					
905	ESMT	INP R/W	[51A 130+00]			905	905		ES	1	P R/W				IP R/W	905	
900	L		2.3%		IP R/W	900	900			1.5%	<u></u>	1.9%	1.8			900	
				GAS										GAS			
895			EXIST EL = 901.2 DESIGN EL = 901.			895	895					EXIST EL DESIGN EL	= 902.5 = 902.36			895	
80	70 60 50	40 30 20		10 20 3C) 40	50	80	70	60 50	40	30 20	10 (2 10	20 30	40	50	
			0 25	50 I HEREBY CERTIFY THAT THIS P OR UNDER MY DIRECT SUPERVI ENGINEER UNDER THE LAWS OF	ISION AND THAT I AM A DULY	Y LICENSED PROFESSION	AL TJT DRAWN		BOLT & ME	ON	12224 NICOLLET A BURNSVILLE, MINNES Phone: (952) 890	AVENUE REV BY	DATE		. 002-6	08-012 STRUCTION	
AKOO) TA 31190	096\CAD\C3D\118096_xs.dwg		SCALE FI	ET CODY L/CHRISTIANSON	DATE05/2		TJT CHECKED	-1717	& ME	NK ·	Phone: (952) 890 mail: Burnsville@bolto www.bolton-mer	on-menk.com			ROSS SEG		

0.05					1							1		
0.05						905			PR/W		A 145+50	INP R/W	905	
								1.5%		2.6%	2.6%	<u> </u>		
905	~~~~	ESMT INP R/W		INP R/W	905	900					GAS		900	
			2.2% 2.6%					WATER						
900				GAS	900	895							895	
			EXIST EL = 903.5							EXIST E	L = 903.1			
895 80	0 70 60	50 40 30 2	DESIGN EL = 903.43	20 30 40	895 50	890 80	70 6	0 50	40 3	DESIGN 0 20 10	EL = 903.24 C 10 20	30 -	890 40 50	
								TYLER S						
						905					2 7%		905	
0.05			STA 142+50		0.05	000				2.1%	GAS			
905		ESMT INP R/W		INP R/W	905	900					•		900	
900			2.1%2.4%	GAS	900	895		WATER					895	
900					500	030							090	
895			EXIST EL = 903.3 DESIGN EL = 903.30		895	890					L = 903.4 EL = 903.48		890	
80		50 40 30 2		20 30 40	50		70 6	0 50	40 3	0 20 10	$\frac{10}{20}$	30 ·	40 50	
905			STA 142+00		905	905	ESM	T			A 144+50	INP R/W	905	
		ESMT INP R/W								n —	2.7%			
900				GAS	900	900					GAS		900	
895			EXIST EL = 903.2 DESIGN EL = 903.16		895	895				EXIST E DESIGN	L = 903.5 EL = 903.54		895	
80	0 70 60	50 40 30 2	20 10 Ç 10	20 30 40	50	80	70 6	0 50	40 3	0 20 10	C 10 20	30 -	40 50	
						905	ESMT		INP R/	w ST	A 144+00	INP R/W	905	
									.5%	2.2%	2.7%			
905			STA 141+44.90	BAKER ST NE	905	900					GĄS		900	
-				2.7%										
900				GAS	900	895		WATER					895	
895			EXIST EL = 903.2 DESIGN EL = 903.02		895	890				DESIGN	L = 903.5 EL = 903.58		890	
80	D 70 60	50 40 30 2	20 10 C 10	20 30 40	50	80	70 6	0 50	40 3	0 20 10	(<u>10</u> 20	30 ·	40 50	
905		ESMT INP R/W	STA 141+00	INP R/W	905									
-			2.2%2.8%											
900				GAS	900	905		ES			A 143+50	INP R/W	905	
									1.5%	2.5%	2.7%		+	
895		WATER			895	900					GAS		900	
			EXIST EL = 903.1								L = 903.5			
890 80	0 70 60	50 40 30 2	DESIGN EL = 902.90	20 30 40	890 50	<u>895</u> 80	70 6	0 50	40 3	0 20 10	EL = 903.54 C = 10 20	30 -	895	
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
				BY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPU DER MY DIRECT SUPERVISION AND THAT I AM A DULY L	ORT WAS PREPARED B	AL TIT				12224 NICOLLET AVENUE	BY DATE	S.P. 002	-608-012	SHEET
l				ER UNDER THE LAWS OF THE STATE OF MINNESOTA.		AL TJT DRAWN TJT		BOLTO & MEN		JRNSVILLE, MINNESOTA 55337 Phone: (952) 890-0509 ail: Burnsville@bolton-menk.com			CONSTRUCTION	187 of
H: \AKCO\	T43118096\CAD\C3D\118096	_xs.dwg	SCALE FEET CODY L	CHRISTIANSON 57052 DATE 05/26	/2020	CHECKED CLC				www.bolton-menk.com		CROSS	SECTIONS	189

905	ESM		STA 148+00	INP R/W	905	905				STA 150	0+70.10	N CIR NE 905	
900		INP R/W	1.8%	¢	900	900			1.3%	- ^	<u>1.6%</u> GAS	900	
895	WATER		EXIST EL = 902.0 DESIGN EL = 901.99	•	895	895		WATER		EXIST EL = DESIGN EL	= 902.9	895	
80	70 60 50 4	40 30 20	10 Q 10	20 30 40	50	80	70 6	0 50 40	30 20	10 (2 10 20 3		
905		NP R/W	STA 147+50	INP R/W	905	905		ESMT INP R/W	4 707	STA 1		INP R/W	
900		2.6%	2.1%	GAS	900	900		1.5%	1.7%		1.6% GAS	900	
895 80	70 60 50 WATER	40 30 20	EXIST EL = 902.2 DESIGN EL = 902.24	20 30 40	895	895 80	70 6	0 50 40		EXIST EL = DESIGN EL	= 902.3 = 902.39 10 20 3	895	
905	ESMT	IP R/W	STA 147+00		905								
900	L- <u>1.5%</u>		2.1%		900	905		5047		STA 1	49+50	905	
895	WATER				895	900		ESMT INP R/W	1.7%		1,9% GAS	INP R/W 900	
890			EXIST EL = 902.4 DESIGN EL = 902.49		890	895		WATER		EXIST EL : DESIGN EL		895	
⁸⁰ 905	70 60 50 4 ESMT	40 30 20	10 C 10	20 30 40	⁵⁰ 905	80	70 6	0 50 40	30 20	10 (2 10 20 3	D 40 50	
		P R/W2.5%_		INP R/W						[
900	WATER			GAS	900	905		TAYLOR ST NE	1.8%	STA 149	9+03.10]	905	
895					895	900		WATER			GAS	900	
890 80	70 60 50 4	40 30 20	EXIST EL = 902.6 DESIGN EL = 902.74 10 C 10	20 30 40	890 50	895 80	70 6	() 0 50 40	30 20	EXIST EL = DESIGN EL 10	= 902.1 . = 901.96 2 10 20 3	0 40 50	
905	ESMT INP	R/W	STA 146+00		905								
900		2.6%	2.0%	GAS	900	905		ESMT		STA 1	48+50	905 INP R/W	
895	WATER				895	900		NP R/W	2.4%		2.1%GAS		
890			EXIST EL = 902.8 DESIGN EL = 902.99		890	895		WATER		EXIST EL : DESIGN EL	• = 901.9 = 901.86	895	
80	70 60 50 4	40 30 20	10 Ç 10	20 30 40	50	80	70 6	0 50 40	30 20	10 (2 10 20 3	D 40 50	
1		· · · · · ·	0 25 50 ENGINE	Y CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPO IER MY DIRECT SUPERVISION AND THAT I AM A DULY LI FR UNDERTHELAWS OF THE STATE OF MINNESOTA.	DRT WAS PREPARED E ICENSED PROFESSION	Y ME DESIGNED VAL TJT DRAWN TJT		BOLTON & MENK	12224 NICOLLET AVENUE BURNSVILLE, MINNESOTA 5533 Phone: (952) 890-0509 mail: Burnsville@bolton-menk.c	REV BY	CSA	P. 002-608-012 H 8 RECONSTRUCTION	Sне 18
\AKCO\T431180)96\CAD\C3D\118096_xs.dwg		SCALE FEET CODY LIC: NO.	y (Imto Generationson 57052 date 05/26/	/2020	CHECKED CLC			www.bolton-menk.com		C	ROSS SECTIONS	18

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
BAT JACKERS JACKERS SCHOOL INTEANOT 900 BAT JACKERS SCHOOL INTEANOT 900 Internet Internet BAT JACKERS SCHOOL INTEANOT 900 Internet Internet Internet BAT JACKERS SCHOOL INTEANOT 900 Internet Interne Interne<		
xxx x		
900 USANO US		
895 1011 0.1 10000 950 900 900 900 900 900 1010 0.1 1000 900 900 900 900 900 900 935 1010 0.1 1000 900 900 900 900 900 900 936 1010 0.1 1000 1000 900 <		
B30 W1176-3930 B300 B40		
000 10,277,177,178 000 000 10,277,177,178 000 000 000 10,277,177,178 000 <td></td> <td></td>		
000 0.0444 1 - 1980 000 0		
900 Image: state sta		
895		
090 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 900 0x3 ki 1 - 100 xi 800 0x3 ki 1 - 100 xi 0x3 ki 1 - 100 xi 0x3 ki 1 - 100 xi 0x3 ki 1 - 100 xi <td< td=""><td></td><td></td></td<>		
xx xx xx yxx yxx<		
900 900 900 900 900 900 900 900		
No. 100 Autor No. 100 Autor No. 100		
899 P01 0 P		
41 30 20 0 20 0 20 00 0 000 0		
900 5TA 0+50 900		
900 57A 0-28 0 900 900 900 900 900 900 900 900 900		
MP # M All Bags All		
895 73 13 895 895 10		
890 ENST EL - 896.33 DESIGN EL - 896.33 890 Image: construction of the state constate construction of the state construction		
40 30 20 10 0 10 20 30 40 50 900		
40 30 20 10 10 20 30 40 50 900		
900 <u>5TA 0-28.80</u> 900 <u>INP R/W</u> <u>5TA 2-00</u> <u>INP R/W</u> 900 <u></u>		
895 12 895 900 INP R/W STA 2+00 INP R/W 900 Inp R/W 900 890 EXIST EL # 896.2 DESION EL # 896.23 890 895 EXIST EL # 896.1 DESION EL # 896.13 895 Inp R/W 900 Inp R/W		
S93 S93 S93 S93 900 S1X 2700 900 S1X 2700 890 B90 B90 B90 B90 B91 Lipz Lipz B95 Lipz Lipz <thlipz< th=""> <thlipz< th=""> <thlipz< td=""><td></td><td></td></thlipz<></thlipz<></thlipz<>		
890 EXIST EL = 896.2 DESIGN EL = 896.23 890 895 EXIST EL = 898.1 DESIGN EL = 898.13 895 40 30 20 10 20 30 40 30 20 10 20 30 40 50 40 30 20 10 20 30 40 50 40 30 20 10 20 30 40 50 40 30 20 10 20 30 40 50 40 30 20 10 20 30 40 50 40 30 20 10 20 30 40 50 40 30 20 10 20 30 40 50 40		
890 EXIST EL = 896.2 DESIGN EL = 896.23 890 895 EXIST EL = 898.1 DESIGN EL = 898.13 895 Image: Construction of the constructi	11%	
40 30 20 10 10 20 30 40 30 20 10 10 20 30 40 50 10 <td< td=""><td>EXIST EL = 898.1</td><td></td></td<>	EXIST EL = 898.1	
Phone: (952) 890-0509 TJT		
Phone: (952) 890-0509 TJT		
STALE EEET Laly (Instrumented to the second se	VIXES PROFESSIONAL TJT DESIGNED TJT DRAWN DEAMONT DRAWN DRAWN DRAWN	
AKCO\T43118096\CAD\C3D\118096_xs.dwg		CROSS SECTIONS